
kieker Documentation
Release 1.15

Various

Jan 10, 2023

Contents

1 Table of Contents 3

2 Licensing 71

3 Citing Kieker 73

i

ii

kieker Documentation, Release 1.15

Kieker is a Java-based application performance monitoring and dynamic software analysis framework. Monitoring
adapters for other platforms, such as C, C++, Visual Basic~6~(VB6), .NET, and COBOL, exist as well (Contact us
directly if you are interested in Kieker support for other platforms).

A general introduction can be found in Introduction.

Contents 1

http://kieker-monitoring.net/support/%7D%7BContact

kieker Documentation, Release 1.15

2 Contents

CHAPTER 1

Table of Contents

1.1 Introduction

The figure below the framework’s composition based on the two main components KiekerMonitoringPart and Kieker-
AnalysisPart.

• The KiekerMonitoringPart component is responsible for program instrumentation, data collection, and logging.
Its core is the MonitoringController.

• The component KiekerAnalysisPart is responsible for reading, analyzing, and visualizing the monitoring data.
Its core is the AnalysisController which manages the life-cycle of the pipe-and-filter architecture of analysis
plugins, including monitoring readers and analysis filters.

Please note that older programs might use a AnalysisController setup while new analyses and tools reply on
architecture-java-analysis-and-tools-api.

• In case you want to learn how to apply Kieker to a Java application, you find an tutorial under Getting Started.

• For more advanced uses you may consult Tutorials

• All tools are documented under Kieker Tools

• More documentation and API and other programming languages can be found below

1.1.1 Framework Components and Extension Points

Fig. 1: Kieker framework components and extension points for custom components

The Figure above depicts the possible extension points for custom components as well as the components which are
already included in the Kieker distribution and detailed below.

• Monitoring writers and corresponding readers for file systems and SQL databases, for in-memory record
streams (named pipes), as well writers and readers employing Java Management Extensions (JMX) and Java

3

kieker Documentation, Release 1.15

Messaging Service (JMS) technology. A special reader allows to replay existing persistent monitoring logs, for
example to emulate incoming monitoring data—also in real-time.

• Time sources utilizing Java’s System.nanoTime() (default) or System.current\-TimeMillis()
methods.

• Monitoring record types allowing to store monitoring data about operation executions (including timing,
control-flow, and session information), CPU and resource utilization, memory/swap usage, as well as a record
type which can be used to store the current time.

• Monitoring probes: A special feature of Kieker is the ability to monitor (distributed) traces of method ex-
ecutions and corresponding timing information. For monitoring this data, Kieker includes monitoring probes
employing AspectJ, Java EE, Servlet, Spring, and Apache CXF technology. Additionally, Kieker includes
probes for (periodic) system-level resource monitoring employing OSHi.

• Analysis/Visualization plugins can be assembled to pipe-and-filter architectures based on input and output
ports. The KiekerTraceAnalysis tool is itself implemented based on Kieker Analysis filters allowing to re-
construct and visualize architectural models of the monitored systems, e.g., as dependency graphs, sequence
diagrams, and call trees.

1.2 Getting Started

In this section we introduce how to work with Kieker. Starting with methods to obtain Kieker, configure and apply
Kieker, and writing your own probes and event types. We use the small sample application Bookstore to illustrate how
to work with Kieker. However, there exists a wide variety how to apply Kieker to applications and services. We will
only cover manual and basic AspectJ instrumentation to discuss basic concept. There is more documentation available
(how-to-apply-insturmentation) which illustrates different techniques to instrument depending on the technology.

• gt-download-and-extract-tutorial

• gt-the-bookstore-example-application

• gt-manual-monitoring-with-kieker

• gt-aspectj-instrumentation-example

• gt-using-kieker-trace-analysis

1.3 Tutorials

Collection of reoccurring tasks when using Kieker.

1.3.1 How to Apply Insturmentation

1.3.2 How to contribute Documentation

Todo: This must be replaced to fit the current docuemtnation with restructured text.

4 Chapter 1. Table of Contents

kieker Documentation, Release 1.15

1.3.3 Java Servlet Container Example

Using the sample Java web application MyBatis JPetStore <http://www.mybatis.org/spring/sample.html> this example
demonstrates how to employ Kieker for monitoring a Java application running in a Java Servlet container – in this case
Jetty <http://www.eclipse.org/jetty/>. Monitoring probes based on the Java Servlet API, Spring and AspectJ are used
to monitor execution, trace, and session data (see also instrumenting-software-aspectj_).

Prerequisites

• Download and extract the **Kieker** binary distribution <http://kieker-monitoring.net/download/>

• The directory kieker-1.14/examples/JavaEEServletContainerExample contains the prepared
Jetty server with the MyBatis JPetStore application and the Kieker-based demo analysis application known
from the Kieker Homepage <http://demo.kieker-monitoring.net/>.

• Switch to this directory or copy it to a suitable location.

Instrumenting Servlets

The subdirectory jetty includes the Jetty server with the JPetStore application already deployed to the server’s
webapps/ directory. The example is prepared to use two alternative types of Kieker probes: either the Kieker
Spring interceptor (default) or the Kieker AspectJ aspects. Both alternatives additionally use Kieker’s Servlet filter.

Required Libraries and Kieker Monitoring Configuration

Both settings require the files aspectjweaver-1.8.2.jar and kieker-1.14, which are already included in
the webapps’s WEB-INF/lib/ directory. Also, a Kieker configuration file is already included in the Jetty’s root
directory, where it is considered for configuration by Kieker Monitoring in both modes.

Servlet Filter (Default)

The file web.xml is located in the webapps’s WEB-INF/ directory. Kieker’s Servlet filters are already enabled:

<filter>
<filter-name>sessionAndTraceRegistrationFilter</filter-name>
<filter-class>kieker.monitoring.probe.servlet.SessionAndTraceRegistrationFilter</

→˓filter-class>
<init-param>
<param-name>logFilterExecution</param-name>
<param-value>true</param-value>

</init-param>
</filter>
<filter-mapping>

<filter-name>sessionAndTraceRegistrationFilter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

This filter can be used with both the Spring-based and the AspectJ-based instrumentation mode.

1.3. Tutorials 5

kieker Documentation, Release 1.15

Spring-based Instrumentation (Default)

Kieker’s Spring interceptor are already enabled in the file applicationContext.xml, located in the webapps’s
WEB-INF/ directory:

<!-- Kieker's instrumentation probes based on the Spring AOP interception framework --
→˓>
<bean id="opEMII"

class="kieker.monitoring.probe.spring.executions.
→˓OperationExecutionMethodInvocationInterceptor" />
<aop:config>

<aop:advisor advice-ref="opEMII"
pointcut="execution(public * org.mybatis.jpetstore..*.*(..))"/>

</aop:config>

Note: When using, for example, the @Autowired feature in your Spring beans, it can be necessary to force the
usage of CGLIB proxy objects with <aop:aspectj-autoproxy proxy-target-class="true"/>.

AspectJ-based Instrumentation

In order to use AspectJ-based instrumentation, the following changes need to be performed. The file start.ini,
located in Jetty’s root directory, allows to pass various JVM arguments, JVM system properties, and other options to
the server on startup. When using AspectJ for instrumentation, the respective JVM argument needs to be activated in
this file.

The AspectJ configuration file aop.xml is already located in the webapps’s WEB-INF/classes/META-INF/
directory and configured to instrument the JPetStore classes with Kieker’s OperationExecutionAspectFull aspect.

When using the AspectJ-based instrumentation, make sure to disable the Spring interceptor in the file
applicationContext.xml, mentioned above.

1. Start the Jetty server using the start.jar file (e.g., via java -jar start.jar). You should make sure
that the server started properly by taking a look at the console output that appears during server startup.

2. Now, you can access the JPetStore application by opening the URL http://localhost:8080/jpetstore/. Kieker
initialization messages should appear in the console output.

6 Chapter 1. Table of Contents

http://localhost:8080/jpetstore/

kieker Documentation, Release 1.15

3. Browse through the application to generate some monitoring data.

4. In this example, Kieker is configured to write the monitoring data to JMX in order to communicate with the
Kieker-based demo analysis application, which is accessible via <localhost:8080/livedemo/<.

5. In order to write the monitoring data to the file system, the JMX writer needs to be disabled in the
file kieker.monitoring.properties, which is located in the directory webapps/jpetstore/
WEB-INF/classes/META-INF/. After a restart of the Jetty server, the Kieker startup output includes the
information where the monitoring data is written to (should be a kieker-<DATE-TIME>/ directory) located
in the default temporary directory. This data can be analyzed and visualized using kieker-tools-trace-analysis-
tool_.

1.3.4 How to apply Kieker in Java EE Environments

Depending on the configuration of the JavaEE application to be monitored, different instrumentation technologies
(e.g., Spring AOP and SOAP/CXF interceptors) can and should be used. In this page, we show how to use AspectJ to
monitor method calls in different JavaEE environments.

Jetty

Copy kieker-1.15_aspectj.jar into a directory, where it can be accessed by Jetty, e.g. jetty/kieker/.

Jetty is usually shipped with a configuration file start.ini in which start parameters are defined. Add the following
snippet to this file:

--exec
-javaagent:kieker/kieker-1.15_aspectj.jar
-Dkieker.monitoring.skipDefaultAOPConfiguration=true
-Daj.weaving.verbose=true

To use a custom Kieker configuration at the given location, the following parameter can be added:

1.3. Tutorials 7

kieker Documentation, Release 1.15

-Dkieker.monitoring.configuration=kieker/kieker.monitoring.properties

Important: Due to a bug in the parser of Jetty, a line ending with .properties is misinterpreted and leads to an
exception. We recommend to rename the extension of Kieker’s configuration file.

To use a custom AspectJ configuration at the given location, the following parameter can be added:

-Dorg.aspectj.weaver.loadtime.configuration=file://c:/jetty/kieker/aop.xml

Important: There seems to be problems with relative paths for AspectJ in JavaEE environments. We recommend to
use URIs instead.

Tested with JPetStore 6 and Jetty 9.2.2.

JBoss

• Needs documentation but ‘ NovaTec’s blog post <http://blog.novatec-gmbh.de/
analysing-kieker-with-jboss-dvdstore-sample-application/>‘__ may serve as a starting point

1.3.5 Tomcat

Copy kieker-1.10_aspectj.jar into a directory, where it can be accessed by Tomcat, e.g. tomcat/
kieker/.

Tomcat is usually shipped with start scripts bin/catalina.(sh|.bat). Add one of the following snippets to
the correct file, depending on your operation system:

set JAVA_OPTS=%JAVA_OPTS%
-javaagent:%CATALINA_BASE%\kieker\kieker-1.10_aspectj.jar
-Dkieker.monitoring.skipDefaultAOPConfiguration=true
-Daj.weaving.verbose=true
-Dkieker.monitoring.configuration=%CATALINA_BASE%/kieker/kieker.monitoring.

→˓properties
-Dorg.aspectj.weaver.loadtime.configuration=...

set JAVA_OPTS=${JAVA_OPTS}
-javaagent:${CATALINA_BASE}\kieker\kieker-1.10_aspectj.jar
-Dkieker.monitoring.skipDefaultAOPConfiguration=true
-Daj.weaving.verbose=true
-Dkieker.monitoring.configuration=${CATALINA_BASE}/kieker/kieker.monitoring.

→˓properties
-Dorg.aspectj.weaver.loadtime.configuration=...

. . .

• Needs documentation but ticket/566 may serve as a starting point

1.3.6 Glassfish

On Glassfish 4, this can be achieved with adding properties to the domain.xml. The default domain in glassfish is
normally called domain0. Let further assume that glassfish was installed in /opt/glassfish-4.0 then the domain.xml file
will be located in /opt/glassfish-4.0/glassfish/domains/domain0/config. In that file search for jvm-options. You will
find multiple such entries between

<java-config ...>
<jvm-options>...</jvm-options>

</java-config>

8 Chapter 1. Table of Contents

http://blog.novatec-gmbh.de/analysing-kieker-with-jboss-dvdstore-sample-application/
http://blog.novatec-gmbh.de/analysing-kieker-with-jboss-dvdstore-sample-application/
http://kieker.uni-kiel.de/trac/ticket/566#comment:8

kieker Documentation, Release 1.15

After the last entry in that XML environment, add the following lines and adapt the paths to your situation.

<jvm-options>-javaagent:${com.sun.aas.installRoot}/lib/kieker-1.15_aspectj.jar</jvm-
→˓options>
<jvm-options>-Dkieker.monitoring.skipDefaultAOPConfiguration=true</jvm-options>
<jvm-options>-Daj.weaving.verbose=true</jvm-options>
<jvm-options>-Dkieker.monitoring.configuration=${com.sun.aas.installRoot}/kieker/
→˓kieker.monitoring.properties</jvm-options>
<jvm-options>-Dorg.aspectj.weaver.loadtime.configuration=${com.sun.aas.installRoot}/
→˓kieker</jvm-options>

1.3.7 WebSphere

• Needs documentation

1.3.8 JBoss (Wildfly)

An alternative approach to run Kieker within a JBoss environment is described here.

Requires:

• Kieker-1.13 or above (1.12 and below cause an error in JBoss environments)

• Kieker packed as Wildfly module

• AspectJ Weaver packed as Wildfly module

Kopiere beide Module einfach in das folgende Wildfly-Verzeichnis:

modules/system/layers/base

Kopiere die Dateien kieker.properties und aop.xml in das (neue) Verzeichnis “kieker” auf oberster Ebene
von Wildfly. Passe nun den Ausgabepfad von Kieker an und schränke das Instrumentieren auf den gewünschten
Paketnamen ein.

[in der Datei standalone.xml]

• Unter dem folgenden, vorhandenen Subsystem müssen die beiden, neuen Module als globale Module registriert
werden:

<subsystem xmlns="urn:jboss:domain:ee:4.0">
<global-modules>

<module name="kieker"/>
<module name="org.aspectj"/>

</global-modules>

[in der Datei standalone.conf]

• Dort, wo die Systempakete deklariert werden, müssen die folgenden ergänzt werden: org.jboss.logmanager,
com.manageengine, org.aspectj, kieker. Du musst im Folgenden nur darauf achten, dass ich Windows-Syntax
für die Skriptbefehle genutzt habe.

set "JAVA_OPTS=%JAVA_OPTS% -Djboss.modules.system.pkgs=org.jboss.byteman,org.jboss.
→˓logmanager,com.manageengine,org.aspectj,kieker"

set "WILDFLY=I:\Software-Engineering\wildfly-10.1.0.Final"

• Weiterhin muss der Aspectjweaver als Javaagent eingetragen werden und für Wildfly entsprechende notwendige
Ergänzungen vorgenommen werden, die das Verwenden von AspectJ überhaupt erst ermöglichen:

1.3. Tutorials 9

https://blog.novatec-gmbh.de/analysing-kieker-with-jboss-dvdstore-sample-application/

kieker Documentation, Release 1.15

set "JAVA_OPTS=%JAVA_OPTS% -javaagent:%WILDFLY%/modules/system/layers/base/org/
→˓aspectj/main/aspectjweaver.jar"

set "JAVA_OPTS=%JAVA_OPTS% -Djava.util.logging.manager=org.jboss.logmanager.LogManager
→˓"

set "JAVA_OPTS=%JAVA_OPTS% -Xbootclasspath/p:%WILDFLY%/modules/system/layers/base/org/
→˓jboss/logmanager/main/jboss-logmanager-2.0.4.Final.jar;%WILDFLY
→˓%\modules\system\layers\base\kieker\main\kieker-1.15.jar;%WILDFLY
→˓%\modules\system\layers\base\org\aspectj\main\aspectjweaver.jar"

• Anschließend werden Einstellungen für das Monitoring durch Kieker vorgenommen:

set "JAVA_OPTS=%JAVA_OPTS% -Dkieker.monitoring.configuration=%WILDFLY%/kieker/kieker.
→˓monitoring.1.13.properties"

set "JAVA_OPTS=%JAVA_OPTS% -Dkieker.monitoring.skipDefaultAOPConfiguration=true"

set "JAVA_OPTS=%JAVA_OPTS% -Daj.weaving.verbose=true"

set "JAVA_OPTS=%JAVA_OPTS% -Dorg.aspectj.weaver.loadtime.configuration=file:%WILDFLY%/
→˓kieker/aop.xml"

Wenn du nun Wildfly startest, sollten keine Fehler erscheinen. Da das Instrumentieren erst beim Laden der
entsprechenden Klassen erfolgt, siehst du an dieser Stelle nur Konsolenausgaben von AspectJ. Erst wenn du das
Szenario ausführst, wird Kieker gestartet und der Log-Ordner angelegt und mit Daten gefüllt.

1.3.9 How to pass the monitoring configuration to Kieker

The Kieker Monitoring Controller checks several locations for the kieker configuration. Initially, Kieker tries to read
META-INF/kieker.monitoring.default.properties file. If it cannot read this file it uses the built in de-
faults for the configuration. Subsequently, Kieker checks whether the kieker.monitoring.configuration
JVM parameter is set and tries to load the configuration from there.

To provide an alternative location for a Kieker configuration in context of command line applications, please add
-Dkieker.monitoring.configuration=FULL_PATH_TO_LOCATION to the java set of parameters, e.g.,
java -Dkieker.monitoring.configuration=/myconfiguration -jar MyApplication.jar

For war file, add your configuration to the META-INF folder or pass the property to the server, e.g., tomcat.

1.3.10 How to collect Traces from Servlets

While we use Jetty in this tutorial, other servlet containers can also be used. Information on them can be found in How
to apply Kieker in Java EE Environments

Prerequisites

• Use Java 8 (it may work with newer versions, see below)

• Get the iObserve variant of the JPetStore from JPetStore-6 <https://github.com/research-iobserve/jpetstore-6>
Use git clone https://github.com/research-iobserve/jpetstore-6.git to obtain the
JPetStore

10 Chapter 1. Table of Contents

kieker Documentation, Release 1.15

• Download Jetty <https://www.eclipse.org/jetty/download.html>. Use a version which is compatible with your
Java version. Kieker 1.14 with AspectJ will not work with Java 11. This will change in the 1.15 which supports
Java 11.

Instrumenting Servlets

Running an Example Application

1.3.11 How to perform Trace Analysis

Todo: Fix internal references.

Kieker trace-analysis implements the special feature of Kieker allowing to monitor, analyze, and visualize (dis-
tributed) traces of method executions and corresponding timing information. For this purpose, it includes monitoring
probes employing AspectJ, Java Servlet, Spring, and Apache CXF technology. Moreover, it allows to reconstruct and
visualize architectural models of the monitored systems, e.g., as sequence and dependency diagrams.

In this tutorial, we will instrument a Java Servlet application with interceptors and AspectJ. For other options to
generate traces in Java and other programming languages, please consult the respective pages in How to perform
Trace Analysis and How to apply Kieker in Java EE Environments.

We use the OperationExecutionRecord from the controlflow package to collect trace information. There
is also an alternative flow-based set of monitoring events which can be used alternatively. However, they are not used
in this tutorial. More information on monitoring traces can be found in tutorials-how-to-perform-trace-analysis.

The OperationExecutionRecord attributes operationName, tin, and tout represent the full qualified
name of the operation including the class name, the time before execution of the operation and the time after the
execution, respectively (see JavaDoc OperationExecutionRecord). The attributes traceId and sessionId are
used to store trace and session information; eoi and ess contain control-flow information needed to reconstruct
traces from monitoring data. For details please refer to the technical report and JavaDoc.

Prerequisites

• A basic understanding of how Kieker performs monitoring (see Getting Started)

• Basic knowledge of AspectJ, i.e., that it is an aspect-oriented approach and technology

• Basic knowledge what a Servlet application is

• Docker, in case you want to use docker to run the example (optional)

• Download the Servlet Engine Jetty (tested with 9.4.30)

Getting JPetStore

Checkout the JPetStore here and switch to the single-jpetstore branch, for a vanilla JPetStore. Please note: There is
also a variant pre-configured with Kieker probes utilizing the flow events instead of the controlflow events used in this
tutorial.

git clone https://github.com/research-iobserve/jpetstore-6.git

cd jpetstore-6
git checkout single-jpetstore

1.3. Tutorials 11

http://api.kieker-monitoring.net/1.14/kieker/common/record/controlflow/OperationExecutionRecord.html
http://api.kieker-monitoring.net/1.14/kieker/common/record/controlflow/OperationExecutionRecord.html
https://www.eclipse.org/jetty/download.html
https://github.com/research-iobserve/jpetstore-6

kieker Documentation, Release 1.15

Now it is time to check whether your version compiles with

mvn compile package

This produces an output similar to

[INFO]
[INFO] --- maven-war-plugin:3.1.0:war (default-war) @ jpetstore ---
[INFO] Packaging webapp
[INFO] Assembling webapp [jpetstore] in [/home/user/jpetstore-6/target/jpetstore]
[INFO] Processing war project
[INFO] Copying webapp resources [/home/user/jpetstore-6/src/main/webapp]
[INFO] Webapp assembled in [97 msecs]
[INFO] Building war: /home/user/jpetstore-6/target/jpetstore.war
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 19.034 s
[INFO] Finished at: 2020-06-15T13:22:23+02:00
[INFO] --

The resulting war file is located in target inside the main project directory jpetstore-6 and named
jpetstore.war.

Instrumenting JPetStore

JPetStore is a small demonstration example of a Servlet based application. That means external HTTP requests to
the application trigger a trace through the application. Therefore, we must instrument the incoming request and all
subsequent method calls through the application. Thus, we must use Servlet interceptors and instrument all methods,
which we can do with AspectJ.

Instrumenting Servlet Requests

The Java Servlet API includes the javax.servlet.Filter interface. It can be used to implement interceptors
for incoming HTTP requests. Kieker provides a SessionAndTraceRegistrationFilter probe which im-
plements the javax.servlet.Filter interface. It initializes the session and trace information for incoming
requests. If desired, it additionally creates an OperationExecutionRecord for each invocation of the filter and
passes it to the MonitoringController. To integrate the interceptor into the application, you must add a filter
configuration to the web.xml file. The web.xml file is located in jpetstore-6/src/main/webapp/WEB-INF

<filter>
<filtername>sessionAndTraceRegistrationFilter</filtername>
<filterclass>kieker.monitoring.probe.servlet.SessionAndTraceRegistrationFilter

→˓</filterclass>
<initparam>

<paramname>logFilterExecution</paramname>
<paramvalue>true</paramvalue>

</initparam>
</filter>
<filtermapping>

<filtername>sessionAndTraceRegistrationFilter</filtername>
<urlpattern>/</urlpattern>

</filtermapping>

12 Chapter 1. Table of Contents

kieker Documentation, Release 1.15

In the above snippet, the Kieker class kieker.monitoring.probe.servlet.
SessionAndTraceRegistrationFilter implementing the probe is registered in the Servlet application and
the filter-mapping assigns it to all Servlet URLs.

Instrumenting Method Calls

While the Servlet filter above will collect all HTTP requests to the application, it cannot collect the traces within the
application. Therefore, we have to apply probes to all methods. In this tutorial, we use AspectJ and Kieker’s AspectJ
probes to accomplish this goal.

Kieker includes the AspectJ-based monitoring probes OperationExecutionAspectAnnotation,
OperationExecu-tionAspectAnnotationServlet, OperationExecutionAspectFull, and
OperationExecutionAspectFullServlet which can be woven into Java applications at compile time and
load time. These probes monitor method executions and corresponding trace and timing information. The probes with
the postfix Servlet additionally store a session identifier within the OperationExecutionRecord. For this
tutorial, we use OperationExecutionAspectFull probe to collect trace information.

To configure AspectJ, we have to create an aop.xml file and place it src/main/resourceswithin the jpetstore-6
project directory. It contains the following lines:

<!DOCTYPE aspectj PUBLIC "//AspectJ//DTD//EN" "http://www.aspectj.org/dtd/aspectj_1_5_
→˓0.dtd">
<aspectj>

<weaver options="">
<include within="org.mybatis..*"/>

</weaver>
<aspects>

<aspect name="kieker.monitoring.probe.aspectj.operationExecution.
→˓OperationExecutionAspectFull"/>

</aspects>
</aspectj>

Line 5 specifies which classes and methods within the project shall be instrumented. The org.mybatis..* limits
the instrumentation to classes of the project itself and ignores all imported jar files, as we are not interested to clutter
the results with API internals. Line 9 selects the aspect OperationExecutionAspectFull. As indicated by
its name, this aspect makes sure that every method within the included classes/packages will be instrumented and
monitored.

Adding Dependencies

The JPetStore example uses Maven to build the application. Therefore, we have now to adapt the build configuration
to use AspectJ and Kieker. Maven is configured by a pom.xml file located in the project root directory.

Open the pom.xml in an editor. Here you must add

• the dependencies for Kieker and AspectJ, and

• the AspectJ compile time weaving.

In the dependency section of the pom.xml add:

<dependency>
<groupId>net.kieker-monitoring</groupId>
<artifactId>kieker</artifactId>
<version>1.14</version>

</dependency>

(continues on next page)

1.3. Tutorials 13

kieker Documentation, Release 1.15

(continued from previous page)

<dependency>
<groupId>org.aspectj</groupId>
<artifactId>aspectjrt</artifactId>
<version>1.8.7</version>

</dependency>

In the build section of the pom.xml add:

<plugin>
<groupId>org.codehaus.mojo</groupId>
<artifactId>aspectj-maven-plugin</artifactId>
<version>1.8</version>
<configuration>

<source>1.7</source>
<target>1.7</target>
<complianceLevel>1.7</complianceLevel>
<aspectLibraries>

<aspectLibrary>
<groupId>net.kieker-monitoring</groupId>
<artifactId>kieker</artifactId>

</aspectLibrary>
</aspectLibraries>
<xmlConfigured>${basedir}/src/main/resources/aop.xml</xmlConfigured>
<sources>

<source>
<basedir>${basedir}/src/main/java</basedir>
<includes>

<include>**/**.java</include>
</includes>

</source>
</sources>

</configuration>
<executions>

<execution>
<goals>

<goal>compile</goal>
</goals>

</execution>
</executions>

</plugin>

Please note that the src/main/resources/aop.xml is explicitly specified in the configuration.

Configuring Kieker

The last step is to place a Kieker configuration file within the application to instruct the MonitoringController where
and how to store the monitoring data. The kieker.monitoring.properties file should contain the following
information and must be placed in src/main/resources/META-INF/ within the project directory.

The name of the Kieker instance.
kieker.monitoring.name=KIEKER

Whether a debug mode is activated.
kieker.monitoring.debug=false

(continues on next page)

14 Chapter 1. Table of Contents

kieker Documentation, Release 1.15

(continued from previous page)

Enable monitoring after startup
kieker.monitoring.enabled=true

The name of the VM running Kieker or empty (will automatically be
resolved)
kieker.monitoring.hostname=

Automatically add a metadata record
kieker.monitoring.metadata=true

Enables the automatic assignment
kieker.monitoring.setLoggingTimestamp=true

Register shutdown hook
kieker.monitoring.useShutdownHook=true

Do not use JMX
kieker.monitoring.jmx=false

The size of the thread pool used to execute registered periodic sensor jobs.
kieker.monitoring.periodicSensorsExecutorPoolSize=0

Disable adaptive monitoring.
kieker.monitoring.adaptiveMonitoring.enabled=false

Timer to use
kieker.monitoring.timer=kieker.monitoring.timer.SystemNanoTimer

Report timestamps in
Accepted values:
0 - nanoseconds
1 - microseconds
2 - milliseconds
3 - seconds
kieker.monitoring.timer.SystemMilliTimer.unit=0

Writer configuration
kieker.monitoring.writer=kieker.monitoring.writer.filesystem.FileWriter

output path
kieker.monitoring.writer.filesystem.FileWriter.customStoragePath=$LOGGING_DIR/
kieker.monitoring.writer.filesystem.FileWriter.charsetName=UTF-8

Number of entries per file
kieker.monitoring.writer.filesystem.FileWriter.maxEntriesInFile=25000

Limit of the log file size; -1 no limit
kieker.monitoring.writer.filesystem.FileWriter.maxLogSize=-1

Limit number of log files; -1 no limit
kieker.monitoring.writer.filesystem.FileWriter.maxLogFiles=-1

Map files are written as text files
kieker.monitoring.writer.filesystem.FileWriter.mapFileHandler=kieker.monitoring.
→˓writer.filesystem.TextMapFileHandler

Flush map file after each record
(continues on next page)

1.3. Tutorials 15

kieker Documentation, Release 1.15

(continued from previous page)

kieker.monitoring.writer.filesystem.TextMapFileHandler.flush=true

Do not compress the map file
kieker.monitoring.writer.filesystem.TextMapFileHandler.compression=kieker.monitoring.
→˓writer.compression.NoneCompressionFilter

Log file pool handler
kieker.monitoring.writer.filesystem.FileWriter.logFilePoolHandler=kieker.monitoring.
→˓writer.filesystem.RotatingLogFilePoolHandler

Text log for record data
kieker.monitoring.writer.filesystem.FileWriter.logStreamHandler=kieker.monitoring.
→˓writer.filesystem.TextLogStreamHandler

Do not compress the log file
kieker.monitoring.writer.filesystem.TextLogStreamHandler.compression=kieker.
→˓monitoring.writer.compression.NoneCompressionFilter

Flush log data after every record
kieker.monitoring.writer.filesystem.FileWriter.flush=true

buffer size. The log buffer size must be big enough to hold the biggest record
kieker.monitoring.writer.filesystem.FileWriter.bufferSize=81920

Key for the writer configuration are two properties kieker.monitoring.writer which selects the writer
and kieker.monitoring.writer.filesystem.FileWriter.customStoragePath which specifies
where the data shall be stored. In this tutorial, we use the kieker.monitoring.writer.filesystem.
FileWriter which can write text and binary log files and even compress the output if necessary. If no
customStoragePath is specified, Kieker will write to /tmp on Unix machines or to the respective system wide
directory for temporary files. In the above code snippet, we specified $LOGGING_DIR as location for log files. Please
choose an appropriate path within your system.

Build and Run

To build the example got to the project root directory and type:

mvn clean compile package

This will produce a jpetstore.war file located in the target directory of the jpetstore-6 project.

To run the JPetStore:

• Download Jetty in case you have not done this already.

• Unpack Jetty next to the jpetstore-6 project directory, e.g.,

drwxr-xr-x 11 user example 4096 Jun 15 14:32 jetty-distribution-9.4.30.v20200611
drwxrwxr-x 7 user example 4096 Jun 15 13:22 jpetstore-6

• Copy the jpetstore.war to the jetty webapps directory

cp jpetstore-6/target/jpetstore.war jetty-distribution-9.4.30.v20200611/webapps

• Switch to the Jetty directory and start the application

16 Chapter 1. Table of Contents

kieker Documentation, Release 1.15

cd jetty-distribution-9.4.30.v20200611

java -jar start.jar

• Now you can access the JPetStore from your browser with http://localhost:8080/jpetstore

• While you are using the application logging information appears in a newly created Kieker logging directory,
e.g.,

– kieker-20200615-130444-341575577055999-UTC--KIEKER/

* kieker-20200615-130444372-UTC-001.dat

* kieker.map

• Feel free to explore the whole JPetStore. While browsing through the shop, you will notice that the log files will
grow over time.

Analyzing Traces

Monitoring data including trace information can be analyzed and visualized with the Kieker trace-analysis tool which
is included in the Kieker binary distribution as well. A the tool outputs dot and pict files, tools to view such files are
required. We usually use GraphViz and GnuPlot utils.

In order to use this tool, it is necessary to install two third-party pro-grams:

1. GraphViz A graph visualization software which can be down-loaded from http://www.graphviz.org

2. GNU PlotUtils A set of tools for generating 2D plotgraphics which can be downloaded from http://www.
gnu.org/software/plotutils/ (for Linux) and from http://gnuwin32.sourceforge.net/
packages/plotutils.htm (for Windows).

3. ps2pdf Theps2pdftool is used to convert ps files to pdf files.

Under Windows it is recommended to add the bin/ directories of both tools to the “path” environment variable. It is
also possible that the GNU PlotUtils are unable to process sequence diagrams. In this case it is recommended to use
the Cygwin port of PlotUtils.

Once both programs have been installed, the Kieker trace-analysis tool can be used. It can be found in
the tools directory of the Kieker binary release. Unpack the trace-analysis-1.14.zip alongside the
jpetstore-6 directory. Start scripts can then be found in trace-analysis-1.14/bin/trace-analysis
(Unix) and trace-analysis-1.14/bin/trace-analysis.bat (Windows). Non-parameterized calls of
the scripts print all possible options on the screen.The commands shown in Listings below generate a sequence di-
agram as well as a call tree to an existing directory named out/. The monitoring data is assumed to be located in
the logging directory, e.g., kieker-20200615-130444-341575577055999-UTC--KIEKER/ alongside the
jpetstore-6 directory.

Before executing the trace-analysis, you need to create the out/ directory alongside the jpetstore-6 directory.

Unix version

trace-analysis-1.14/bin/trace-analysis -inputdirs kieker-20200615-130444-
→˓341575577055999-UTC--KIEKER \

-outputdirout/ \
-plot-Deployment-Sequence-Diagrams-plot-Call-Trees-short-labels

Windows version

1.3. Tutorials 17

https://kieker-monitoring.atlassian.net/wiki/spaces/DOC/pages/655950052/Instrumentation+with+CXF+Interceptors

kieker Documentation, Release 1.15

trace-analysis-1.14/bin/trace-analysis.bat -inputdirs kieker-20200615-130444-
→˓341575577055999-UTC--KIEKER

-outputdir out\
-plot-Deployment-Sequence-Diagrams-plot-Call-Trees-short-labels

The resulting contents of the out/ directory should be similar to the following tree:

• out/

– deploymentSequenceDiagram-6120391893596504065.pic

– callTree-6120391893596504065.dot

– system-entities.html

The .pic and .dot files can be converted into other formats, such as .pdf, by using the GraphViz and Plot Utils
tools dot and pic2plot. Type the following to generate PDF file from the graphics.

dot callTree6120391893596504065.dot -T pdf -o callTree.pdf
pic2plot deploymentSequenceDiagram6120391893596504065.pic-T pdf > sequenceDiagram.pdf

The scripts dotPic-fileConverter.sh and dotPic-fileConverter.bat convert all .pic and .dot in
a specified directory. The scripts can be found in the bin directory of the Kieker binary distribution.

Example Outputs of the Trace Analysis

1.3.12 How to configure Kieker within Java-Applications and -Services

There are three scenarios where Kieker configuration parameters can be used Java applications and must be configured
on command line or startup scripts.

1. Normal Java application without Kieker parts which should be instrumented and observed

2. Java applications which has already Kieker integrated or woven in with AspectJ

3. Java application which uses Kieker directly and accepts an Kieker property file

Normal Java Application

This works largely like the second option. However, you have to add the Kieker agent to the java invocation.

Application with integrated Kieker at Compile or Bundling Time

In case you have an application which need Kieker configuration parameters set, but which does
not provide a command line option for such configuration file can add -Dkieker.monitoring.
configuration=$CONFIGUATION_FILE to the java invocation statement. In many gradle-based builds this
can be achieved by using the *_OPTS environment variable. The * represents the name of the tool.

Kieker-based Application

Add your configuration parameters to the application’s configuration file

18 Chapter 1. Table of Contents

https://docs.gradle.org/current/userguide/application_plugin.html

kieker Documentation, Release 1.15

1.3.13 How to Write Tests for Your own Kieker Probes

Writing your own probes with Kieker is quite simple. However, testing them requires additional insight into Kieker
which require reading a lot of source code. As this is an unpleasant task, I collected some basic ideas in this how-to.

Let say you have a written a probe ExampleProbe:

1 import kieker.common.record.IMonitoringRecord;
2 import kieker.common.record.flow.trace.TraceMetadata;
3 import kieker.common.record.flow.trace.operation.BeforeOperationEvent;
4 import kieker.monitoring.core.controller.IMonitoringController;
5 import kieker.monitoring.core.controller.MonitoringController;
6 import kieker.monitoring.core.registry.TraceRegistry;
7

8 public class ExampleProbe {
9 private final IMonitoringController ctrl = MonitoringController.getInstance();

10 private final TraceRegistry registry = TraceRegistry.INSTANCE;
11

12 public ExampleProbe() {
13 }
14

15 public void takeMeasurement(final String operationSignature,
16 final String classSignature) {
17

18 /** collect event data. */
19 final TraceMetadata trace = this.registry.getTrace();
20 final long timestamp = this.ctrl.getTimeSource().getTime();
21 final long traceId = trace.getTraceId();
22 final int orderIndex = trace.getNextOrderId();
23

24 /** create event. */
25 final IMonitoringRecord event = new BeforeOperationEvent(timestamp,
26 traceId, orderIndex, operationSignature,
27 classSignature);
28

29 /** log event. */
30 this.ctrl.newMonitoringRecord(event);
31 }
32 }

When you use this in an application, the IMonitoringController will refer to a singleton within the appli-
cation, which is great within an application. You can pass a configuration via a file at a default location or by
specifying an environment variable. Unfortunately, this makes is more complicated for testers to pass their config-
uration to the controller. In case you instantiate a controller in the test class, it will create a separate controller for
the test class. Fortunately, there is a way around this limitation. As the MonitoringController factory method
checks on environment variables, you can set them in a test statically. Therefore, they are set before creating the first
MonitoringController.

1 package example.probe.test;
2

3 import kieker.monitoring.core.configuration.ConfigurationKeys;
4 import org.junit.Test;
5

6 public class ExampleProbeTest {
7

8 /**
9 * Set system properties before instantiation anything.

10 * Otherwise the MonitoringController will not see the
(continues on next page)

1.3. Tutorials 19

kieker Documentation, Release 1.15

(continued from previous page)

11 * configuration.
12 */
13 static {
14 System.setProperty(ConfigurationKeys.CONTROLLER_NAME,

→˓"ExampleProbeTest Controller");
15

16 System.setProperty(ConfigurationKeys.WRITER_CLASSNAME,
17 TestDummyWriter.class.getCanonicalName());
18 }
19

20 @Test
21 public void test() {
22 final ExampleProbe probe = new ExampleProbe();
23 probe.takeMeasurement("myOperation()", "example.ExampleClass");
24

25 /** first record. */
26 final IMonitoringRecord metadata = TestDummyWriter.getEvents().get(0);
27

28 Assert.assertEquals("First record should be KiekerMetaData",
29 metadata.getClass().getName(),
30 KiekerMetadataRecord.class.getName());
31

32 /** second record. */
33 final IMonitoringRecord beforeEvent =
34 TestDummyWriter.getEvents().get(1);
35

36 Assert.assertEquals("First record should be KiekerMetaData",
37 beforeEvent.getClass().getName(),
38

39 BeforeOperationEvent.class.getName());
40 }
41 }

In this test class, we set two properties. Firstly, we specify a controller name. This helps when debugging tests, as
we can check whether the used controller is really the one with the internal name “ExampleProbeTest Controller”.
Secondly, we set the writer class. By default Kieker would write into a text log file. However, during testing we
do not want that Kieker creates a directory and stores log information there. Instead we want to access logged data
programmatically. The TestDummyWriter allows to access events from a statically defined internal list, which
is most convenient for testing. The list is statically accessed with TestDummyWriter.getEvents(). The first
event is always KiekerMetadataRecord, except you configure the controller to omit the metadata record.

Based on this simple setup, you can test your own probes easily. Please note, currently the TestDummyWriter is
still part of iObserve and will move to Kieker in the near future.

1.3.14 How to use JMS Reader and Writer

This is a short introduction to the JMS reader and writer of Kieker named AsyncJmsWriter and JmsReaderStage.
The directory examples/userguide/appendix-JMS/ contains the sources, gradle scripts etc. used in this
example. It is based on the Bookstore application with manual instrumentation presented getting-started_.

The following sections provide step-by-step instructions for the ActiveMQ JMS server implementation. The general
procedure for this example is the following:

1. Download and prepare the respective JMS server implementation

2. Copy required libraries to the example directory

20 Chapter 1. Table of Contents

kieker Documentation, Release 1.15

3. Start the JMS server

4. Start the analysis instance which receives records via JMS

5. Start the monitoring instance which sends records via JMS

Note: Due to a bug in some JMS servers, avoid paths including white spaces.

ActiveMQ

Download and Prepare ActiveMQ

Download an ActiveMQ archive from <http://activemq.apache.org/download.html> and decompress it to the base
directory of the example. Note, that there are two different distributions, one for Unix/Linux/Cygwin and another one
for Windows.

Under Unix-like systems, you need to set the executable-bit of the start script:

chmod +x bin/activemq

Also under Unix-like systems, make sure that the file bin/activemq includes Unix line endings (e.g., using your
favorite editor or the dos2unix tool).

Copy ActiveMQ Libraries

Copy the following files from the ActiveMQ release to the lib/ directory of this example:

1. activemq-all-<version>.jar (from ActiveMQ’s base directory)

2. slf4j-log4j<version>.jar (from ActiveMQ’s lib/optional directory)

3. log4j-<version>.jar (from ActiveMQ’s lib/optional directory)

Kieker Monitoring Configuration for ActiveMQ

The file src-resources/META-INF/kieker.monitoring.properties-activeMQ is already config-
ured to use the JmsWriter via ActiveMQ. The important properties are the definition of the provider URL and the
context factory:

kieker.monitoring.writer.jms.JmsWriter.ProviderUrl=tcp://127.0.0.1:61616/
kieker.monitoring.writer.jms.JmsWriter.ContextFactoryType=org.apache.activemq.jndi.
→˓ActiveMQInitialContextFactory

Running the Example

The execution of the example is performed by the following three steps:

1. Start the JMS server (you may have to set your JAVA_HOME variable first): - bin/activemq start Start
of the JMS server under UNIX-like systems - bin/activemq start Start of the JMS server under Windows

2. Start the analysis part (in a new terminal): - ./gradlew runAnalysisActiveMQ Start the analysis part
under UNIX-like systems - ‘‘gradlew.bat runAnalysisActiveMQ‘‘Start the analysis part under Windows

1.3. Tutorials 21

http://activemq.apache.org/download.html

kieker Documentation, Release 1.15

3. Start the instrumented Bookstore (in a new terminal): - ./gradlew runMonitoringActiveMQ Start the
analysis part under UNIX-like systems - gradlew.bat runMonitoringActiveMQ Start the analysis
part under Windows

1.3.15 How to use AMQP Writer and Reader

This chapter gives a brief description on how to use the AmqpWriter and AMQPReaderStage classes, which allow to
use Kieker with AMQP-based queue implementations such as RabbitMQ <http://www.rabbitmq.com>. The directory
examples/userguide/appendix-AMQP/ contains the sources, gradle scripts and other sources used in this
example. It is based on the Bookstore application.

The following paragraphs provide step-by-step instructions for the popular AMQP implementation RabbitMQ.

Preparation

Download and Install RabbitMQ

Download the RabbitMQ distribution from http://www.rabbitmq.com/download.html and follow the installation in-
structions for your OS. Since RabbitMQ requires Erlang, additional software packages may have to be installed on
your machine.

In order to use RabbitMQ’s integrated management UI, you may have to enable the appropriate plugin first. This is
done by issuing the following command from the command line.

• rabbitmqplugins enable rabbitmq management Enable the management UI under UNIX-like
systems

• rabbitmqplugins enable rabbitmq management Enable the management UI under Windows]

Once the UI is enabled, you may access it at port 15672 by default.

Configure RabbitMQ

Once the RabbitMQ server is installed and started, create a queue for Kieker to use. This can be done easily using
RabbitMQ’s management UI. It is accessible via http://localhost:15672 (the default credentials are guest:guest) We
will assume a queue named kieker for the remainder of this example. Please note the following caveats when
configuring the server:

1. If you choose to create a transient queue, the entire queue (not just the queued messages) is destroyed on server
shutdown and must be re-created manually.

2. The RabbitMQ server’s default permissions grant access only from localhost. If your RabbitMQ server runs
on a remote machine, you have to set the permissions accordingly.

Kieker Monitoring Configuration for RabbitMQ

The file src-resources/META-INF/kieker.monitoring.properties is already configured to use the
AmqpWriter. The important properties are the server URI and the queue name.

kieker.monitoring.writer.amqp.AmqpWriter.uri=amqp://guest:guest@127.0.0.1
kieker.monitoring.writer.amqp.AmqpWriter.queuename=kieker

22 Chapter 1. Table of Contents

http://www.rabbitmq.com/download.html
http://localhost:15672

kieker Documentation, Release 1.15

Running the Example

The execution of the example is performed by the following three steps:

1. Ensure that the RabbitMQ server is started and the configured queue is accessible.

2. Start the analysis part (in a new terminal): - # ./gradlew runAnalysisAMQP Start the analysis part
under UNIX-like systems - # gradlew.bat runAnalysisAMQP Start the analysis part under Windows]

3. Start the instrumented Bookstore (in a new terminal): - # ./gradlew runMonitoringAMQP Start the
analysis part under UNIX-like systems - # gradlew.bat runMonitoringAMQP Start the analysis part
under Windows

1.4 Instrumenting Software

Kieker allows to instrument various types of applications and services utilizing different techniques to instrument and
implement probes. Yet the monitoring data produced can be analyzed by all Kieker tools.

Kieker supports a ever growing variety of programming languages and technologies to measure runtime information
of your software systems. In general Kieker uses probes to collect information which are then send to a logging
facility. To introduce the probes into your software system, Kieker uses different techniques including aspect-oriented
programming. They allow the introduction of probes without changing the source code. For rare cases, where no such
technique is applicable, Kieker can be introduced manually.

1.4.1 Instrumenting Java

This section comprises information on instrumenting Java application including creating and using probes, writers,
samplers and related topics.

Configuring Kieker

• Kieker uses a configuration file kieker.monitoring.properties

• Must be placed depending on application type (see related)

• Different options to log data (refer to real info where by crosslink)

Todo: Add the following info to kieker configuration.

• CSV logging file (storage on the monitoring system)

• Binary logging file (storage on the monitoring system)

• Compressed logging file (binary and CSV, storage on the monitoring system)

• TCP binary stream (transfer to remote host)

– Kieker binary transport protocol (two TCP connections supporting a prioritized second channel)

– ExploreViz binary transport protocol (single TCP connection)

– Modern Kieker binary transport protocol (experimental)

• JMS object message transport (transfer to remote host)

• JMX transport via notifications (transfer to remote host)

• UNIX based named pipes (local transfer)

1.4. Instrumenting Software 23

kieker Documentation, Release 1.15

• Database writer (experimental)

• AMQP protocol message support (transfer to remote host)

Kieker Monitoring instances can be configured by properties files, Configuration objects, and by passing property
values as JVM arguments. If no configuration is specified, a default configuration is used. The default configura-
tion can be found here including documentation for all properties. Additional information can be found within the
documentation of the Monitoring Controller, Monitoring Probes and Monitoring Writers. The default configu-
ration properties file, which can be used as a template for custom configurations, is provided by the file kieker.
monitoring.example.properties in the directory examples/ directory of the binary release.

Configurations for Singleton Instances

In order to use a custom configuration file, its location needs to be passed to the JVM using the parameter
kieker.monitoring.configuration as follows:

java -Dkieker.monitoring.configuration=<ANY-DIR>/my.kieker.monitoring.properties [...]

Alternatively, a file named kieker.monitoring.properties can be placed in a directory called META-INF/
located in the classpath. The available configuration properties can also be passed as JVM arguments, e.g.,
-Dkieker.monitoring.enabled=true.

Configurations for Non-Singleton Instances

The class Configuration provides factory methods to create Configuration objects according to the
default configuration or loaded from a specified properties file: createDefaultConfiguration,
createConfigurationFromFile, and createSingletonConfiguration. Note, that JVM parame-
ters are only evaluated when using the factory method createSingletonConfiguration. The returned
Configuration objects can be adjusted by setting single property values using the method setProperty.

Manual Instrumentation

Manual instrumentation is usually not the right way to instrument larger applications. However, to inspect smaller
portions of an application in an ad-hoc manner or in cases aspect-weaving is not possible, manual instrumentation can
be a viable option.

To use Kieker with an Java application, you have to add the dependency to your build system, e.g., (in gradle)

compile 'net.kieker-monitoring:kieker:1.14'

See also https://mvnrepository.com/artifact/net.kieker-monitoring/kieker

Instrumentation requires three key elements: - A MonitoringController - Data collection - Logging of the data

Monitoring Controller

The MonitoringController provides basic facilities for monitoring and logging, including a source for times-
tamps. It can be obtained in any class by

private static final IMonitoringController MONITORING_CONTROLLER =
MonitoringController.getInstance();

This returns a singleton instance of the monitoring controller.

24 Chapter 1. Table of Contents

https://mvnrepository.com/artifact/net.kieker-monitoring/kieker

kieker Documentation, Release 1.15

Data Collection

Usually in data collection you gather all information you want to store and put that data into an instance of an event
type.

final long tin = MONITORING_CONTROLLER.getTimeSource().getTime();
final String operationName = "public void exampleOp()"
final String className = this.getClass().getName();

In this example, the first line uses the time source facility of the MonitoringController to gain the current time.
Subsequent, two strings are defined which represent the name of the operation (method) and the name of the class the
method resides in. Finally, the data must be packed into a event type.

final BeforeOperationEvent e =
new BeforeOperationEvent(tin, className, operationName);

Logging of Data

The last step uses the logging facility of the MonitoringController.

Instrumentation with AspectJ

Todo: Describe general approach to do so. Refer to a tutorial for a quicker approach.

The tutorial-servlet-example_ contains a some basic introduction to using AspectJ probes.

AspectJ Configuration

Compile-time weaving

Load-time weaving

References

• AspectJ probes

Servlet Instrumentation

Servlets can be instrumented utilizing javax.servlet.ServletContextListerner, javax.servlet.
http.HttpSessionListener and javax.servlet.Filter.

The first is triggered when a Servlet context is created (instantiation of the Servlet) and destroyed. The second is
triggered every time a new session is created. And the last is invoked every time a request is sent to the Servlet. In the
following we will address all three types.

Please note that Servlets can also use other listeners which could in principle also used to trigger monitoring. However,
such probes do not exist within Kieker, but can be build easily with Kieker framework functionality..

1.4. Instrumenting Software 25

http://api.kieker-monitoring.net/1.14/

kieker Documentation, Release 1.15

Servlet Context Listener

Todo: Add how to add context listeners here (iObserve)

HTTP Session Listener

Todo: Add how to add session listeners here (Kieker, iObserve)

Servlet Filter

The Java Servlet API includes the javax.servlet.Filter and interface. It can be used to implement interceptors
for incoming HTTP requests. Kieker uses this interface to implement different probes. To add such interceptor to a
Servlet, you have to edit the web.xml file in your Servlet project. For example:

<filter>
<filtername>sessionAndTraceRegistrationFilter</filtername>
<filterclass>kieker.monitoring.probe.servlet.SessionAndTraceRegistrationFilter

→˓</filterclass>
<initparam>

<paramname>logFilterExecution</paramname>
<paramvalue>true</paramvalue>

</initparam>
</filter>
<filtermapping>

<filtername>sessionAndTraceRegistrationFilter</filtername>
<urlpattern>/</urlpattern>

</filtermapping>

This configuration adds the kieker.monitoring.probe.servlet.SessionAndTraceRegistrationFilter
interceptor to the Servlet configuration and identifies it with sessionAndTraceRegistrationFilter.
It sets one parameter logFilterExecution to true. In the filter mapping, the
sessionAndTraceRegistrationFilter is mapped to all URLs, i.e., to all Servlet in the project.

Related Information

Kieker comes with many different Servlet filters.

Todo: Add list to filters and listeners here

Instrumentation with CXF Interceptors

Instrumentation with DiSL

https://gitlab.ow2.org/disl/disl

26 Chapter 1. Table of Contents

https://gitlab.ow2.org/disl/disl

kieker Documentation, Release 1.15

Instrumentation with AIM

Todo: WE need to add documentation here.

Instrumentation of Java EE Applications

Instrumentation of Spring Applications

1.4.2 Instrumenting C and other Native Programming Languages

We provide experimental C language support for Kieker.

Creating your own Event Types

Instrumentation

• Include instrumentation with gcc feature

• Using AspectC++ for instrumentation

1.4.3 Instrumenting Perl

Perl (experimental, http://eprints.uni-kiel.de/21141/7/vortrag.pdf)

• Sub::WrapPackages based AOP

• Manual instrumentation

Note: The code generator for Kieker records can produce record types for Perl.

1.4.4 Python Instrumentation

Note: This is an upcoming effort. Currently, we are selecting a model to create fast and sufficient record types in
python.

1.4.5 Kieker4COM

Kieker4COM is a Kieker adapter supporting monitoring of programming languages based on Microsoft’s Component
Object Model (COM). The adapter has been developed as a part of the DynaMod research project. It has been tested
particularly with Visual Basic 6.

1.4. Instrumenting Software 27

http://eprints.uni-kiel.de/21141/7/vortrag.pdf
https://en.wikipedia.org/wiki/Component_Object_Model
https://en.wikipedia.org/wiki/Component_Object_Model
http://kosse-sh.de/dynamod

kieker Documentation, Release 1.15

Downloading, Installing, Using Kieker4COM

Downloading Kieker4COM

• Kieker4COM install archives are provided by the nightly build

• The sources are available via the Git repository kieker4com

Installing Kieker4COM

Note: If you have just uninstalled a Kieker4COM version, you should perform a restart before starting a new installa-
tion process!

1. Start installer

Double-click on the downloaded file to start the installer.

You may need to allow the execution of the Java Virtual Machine required for the installation program.

2. Language Selection

In the following dialog, you can select the language used in the installation wizard. Currently, German and English
are supported.

3. Installation Directory

The next step of the installation wizard lets you select the Kieker4COM installation directory. Currently, our recom-
mendation is to keep the default value. In the following step, this step of creating the installation directory requires an
additional confirmation.

28 Chapter 1. Table of Contents

http://kieker.uni-kiel.de/jenkins/job/kieker4com-nightly-release/lastSuccessfulBuild/artifact/dist/release/
https://build.se.informatik.uni-kiel.de/kieker/4com
http://en.wikipedia.org/wiki/Java_Virtual_Machine

kieker Documentation, Release 1.15

4. Installation of Kieker4COM Binaries

After having confirmed the installation in the previous step, the installer copies the Kieker4COM binaries to the
selected directory.

1.4. Instrumenting Software 29

kieker Documentation, Release 1.15

5. Selection of J-Integra COM License File

Kieker4COM employs the ‘ J-Integra COM <http://j-integra.intrinsyc.com/com.asp>‘__ bridge for accessing the Java-
based Kieker monitoring component. The use of J-Integra COM requires the installation of a ‘ JI COM Client license
<http://j-integra.intrinsyc.com/pricing.asp>‘__.

Please select the file system location of the J-Integra COM license file and confirm your selection.

30 Chapter 1. Table of Contents

http://j-integra.intrinsyc.com/com.asp
http://j-integra.intrinsyc.com/pricing.asp

kieker Documentation, Release 1.15

6. Registration of Kieker4COM and Completion of Installation

The next installation steps include the registration of the Kieker4COM service in the Windows registry, the activation
of the J-Integra COM installation included with Kieker4COM, as well as an initial start of the Kieker4COM service.

1.4. Instrumenting Software 31

kieker Documentation, Release 1.15

32 Chapter 1. Table of Contents

kieker Documentation, Release 1.15

1.4. Instrumenting Software 33

kieker Documentation, Release 1.15

34 Chapter 1. Table of Contents

kieker Documentation, Release 1.15

Testing the Kieker4COM installation

The Kieker installation directory (%KIEKER_HOME%) contains a folder called examples, which includes example
projects instrumented in different programming langugages. The directory examplesvb6\ includes examples for Visual
Basic 6:

1. bookstore-annotated. A sample application which is enriched by AspectVB6 monitoring annotations which
can be processed by the ‘ AspectLegacy <http://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/>‘__ tool
in order to weave Kieker4COM monitoring aspects into the VB6 source code. See the Wiki page Kieker-
COM/Aspects for details.

2. bookstore-woven. This project is the result of the afore-mentioned process of weaving Kieker4COM monitoring
aspects into the source code of the bookstore-annotated project. We will use this project to test the Kieker4COM
installation.

The following figure shows the directory contents:

1.4. Instrumenting Software 35

http://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/
http://kieker.uni-kiel.de/trac/wiki/Kieker4COM/Aspects
http://kieker.uni-kiel.de/trac/wiki/Kieker4COM/Aspects
http://kieker.uni-kiel.de/trac/wiki/Kieker4COM/Aspects
http://kieker.uni-kiel.de/trac/wiki/Kieker4COM/Aspects
http://kieker.uni-kiel.de/trac/wiki/Kieker4COM/Aspects

kieker Documentation, Release 1.15

UPDATE: In newer versions, the example directory includes a pre-compiled Bookstore.exe which can be started
directly without the need to import the VB6 project.

Import the project into the Visual Basic 6 IDE by opening the project file Bookstore.vbp. Having started the example,
the following debug messages should appear in the Immediate Window (Ctrl+G):

The Kieker monitoring log is written to a directory named like kieker-<timestamp> located in the %TEMP% directory
(e.g., C:UsersvoornAppDataLocalTemp).

36 Chapter 1. Table of Contents

kieker Documentation, Release 1.15

This Kieker file system monitoring log can now be processed by the Kieker.TraceAnalysis tool, just like monitoring
logs from Java or .NET systems. An example monitoring log is contained in the examplesvb6monitoring-logsdirectory.

A KiekerCOM.log file with log messages is written to the %USERPROFILE% directory.

The following diagrams were created by the following calls to the Kieker.TraceAnalysis tool:

C:Program Fileskieker4COMbin>trace-analysis.bat -i ..examplesvb6monitoring-logskieker-20111017-152928614-

1.4. Instrumenting Software 37

kieker Documentation, Release 1.15

UTC-voorn-PC-KIEKER -o %TEMP% -p bla –plot-Assembly-Component-Dependency-Graph –plot-Assembly-
Component-Dependency-Graph

Log messages are written to a kieker.log file in the %USERPROFILE% directory.

Please refer to the ‘ Kieker documentation <https://se.informatik.uni-kiel.de/kieker/documentation/>‘__—particularly
the User Guide—to learn more about the usage of the Kieker.TraceAnalysis tool.

Uninstalling Kieker4COM

38 Chapter 1. Table of Contents

https://se.informatik.uni-kiel.de/kieker/documentation/

kieker Documentation, Release 1.15

1. Start Uninstaller

Double-click on the uninstaller.jar file, to be found in the Uninstaller sub-directory.

You may need to allow the execution of the ‘ Java Virtual Machine <http://en.wikipedia.org/wiki/Java_Virtual_
Machine>‘__ required for the uninstaller.

2. Confirm Uninstallation

In the upcoming wizard you should select the deletion of all files included in the Kieker4COM installation directory
and start the uninstall process.

The uninstaller reports the successful deregistration of the Kieker4COM service and the successfull completion of the
uninstallation process.

1.4. Instrumenting Software 39

http://en.wikipedia.org/wiki/Java_Virtual_Machine
http://en.wikipedia.org/wiki/Java_Virtual_Machine

kieker Documentation, Release 1.15

3. Manual Deletion of the Kieker4COM Installation Directory

The uninstaller already removed most of the sub-directories and files included in the Kieker4COM installation direc-
tory. As a last step, you’ll need to manually remove the kieker4COM directory from your %ProgramFiles% (e.g.,
C:Programmekieker4COM) directory.

In some cases, the file Kieker4COM cannot be removed because it used. Please perform a restart an repeat this manual
deletion step.

Important note for Subsequent Reinstallation

You should restart your system after an uninstallation before starting a subsequent installation.

Kieker4COM Aspects

Please see Getting Started to learn how to install and use Kieker4COM. The pathes mentioned in this document refer
to the installation directory.

Kieker4COM VB6 Aspects Project

The Kieker4COM aspects project directory for VB6 can be found in the directory Kieker4COMaspectsvb6. The
VB6 project file, which can be imported into the Visual Basic 6 IDE and can be used with Aspect VB6, is
Kieker4COMaspectsvb6Aspects.vbp.

Todo: The tools site has moved. Please fix it.

Currently, the project includes two aspects for monitoring executions (OpExecIcptr) and calls (OpCallIcptr) of VB6
routines, i.e., Procedures, Functions, and Properties:

1. OpExecIcptr.cls

2. OpCallIcptr.cls

Using the Kieker4COM Aspects

The directory Kieker4COMexamplesvb6bookstore-annotated contains a VB6 version of the Bookstore application,
including annotations for the Kieker4COM aspects. These annotations can be processed by Aspect VB6.

Todo: The tools site has moved. Please fix it.

Adding Annotations to VB6 Source Code

The examples were taken from the KiekerCOM example project Kieker4COMexamplesvb6bookstore-annotated.

40 Chapter 1. Table of Contents

http://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/
http://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/

kieker Documentation, Release 1.15

OpExecIcptr

'@intercept#Execution:OpExecIcptr["Bookstore","Class_Initialize"]

Private Sub Class_Initialize()

Set oCatalog = New catalog

...

OpCallIcptr

Public Sub searchBook()

'@intercept#Call:OpCallIcptr["Bookstore", "searchBook", "Catalog", "getBook"]

catalog.getBook (False)

'@intercept#Call:OpCallIcptr["Bookstore", "searchBook", "CRM", "getOffers"]

crm().getOffers

End Sub

Using AspectVB6 for Weaving the Monitoring Code

Using the command-line

/path/to/avb6c.sh \
-s bookstore-annotated/Bookstore.vbp \
-a ../../src/aspectvb6/Aspects.vbp -o bookstore-woven/

1.4. Instrumenting Software 41

kieker Documentation, Release 1.15

Using the GUI

1.4.6 Instrumenting Visual Basic 6

AspectLegacy Quick Start (Visual Basic 6)

42 Chapter 1. Table of Contents

kieker Documentation, Release 1.15

Table of Contents

1. AspectLegacy Quick Start (Visual Basic 6)

1. Introduction to the “Bookstore” Example

2. Installation

3. Weaving the “Bookstore” Example

4. Enhanced parameters

This section describes the steps to be done for installing the AspectLegacy tool. Note that the tool works under Linux
as well as under Windows XP/Vista/7, but for compiling any (woven) Visual Basic 6 source code projects (.vbp), an
installed version of the Visual Basic 6 integrated development environment (VB6 IDE) from Microsoft is required;
since the IDE is only available for Windows machines, VB6 code cannot be compiled (but woven) under Linux.

Introduction to the “Bookstore” Example

The AspectLegacy distribution contains a simple “bookstore” example code, written in Visual Basic 6 and divided
into a main- and an aspects-project. Depending on this example, the section below describes how VB6 source files
can be woven using the AspectLegacy tool, and how the woven code can be compiled afterwards. The source code
of the bookstore main project contains several annotations referring to the classes of the aspects projects. They will
take effect after weaving, by showing up dialogue windows whenever any of the annotated code positions are being
entered while runtime.

Installation

It is assumed that you have already installed a VB6 IDE under Windows.

• At first, you have to download the AspectLegacy binary distribution archive (“dynamod.aspectlegacy-
1.0_binaries”), which is available here as a .zip- as well as a .tar.gz-file.

• Extract the downloaded archive to an arbitrary location; the content will be placed into a (sub-)directory
“dynamod.aspectlegacy-1.0” containing the following elements:

The content of the sub-folders is as follows:

1.4. Instrumenting Software 43

https://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/wiki/dynamod.aspectlegacy/QuickStartVB6#AspectLegacyQuickStartVisualBasic6
https://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/wiki/dynamod.aspectlegacy/QuickStartVB6#IntroductiontotheBookstoreExample
https://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/wiki/dynamod.aspectlegacy/QuickStartVB6#Installation
https://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/wiki/dynamod.aspectlegacy/QuickStartVB6#WeavingtheBookstoreExample
https://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/wiki/dynamod.aspectlegacy/QuickStartVB6#Enhancedparameters
http://sourceforge.net/projects/dynamod/files/dynamod.aspectlegacy/1.0/

kieker Documentation, Release 1.15

Folder Content
bin Binary files (script files)
dist Distribution files, contains the installer for the weaver.
examples Examples for Cobol (futural feature) and Visual Basic 6.
lib Required libraries.

• Start the installer by double-clicking the “dynamod.aspectlegacy-1.0-installer-WIN32.jar” file, which is located
in the “dist”-directory.

• Select the language to be used for the installation process:

Note that the language only affects the installation process, not the aspect legacy application itself, which is always in
english.

• Afterwards, you will be asked for the target location of the application files:

44 Chapter 1. Table of Contents

kieker Documentation, Release 1.15

The default directory is “C:Program FilesAspectLegacy”, which should be preferably chosen. In case the target
directory does not exist, its creation has to be confirmed:

1.4. Instrumenting Software 45

kieker Documentation, Release 1.15

• After the target directory has been confirmed, the installation process will start:

46 Chapter 1. Table of Contents

kieker Documentation, Release 1.15

After the installation process finishes successfully, the “Next”-button will be enabled:

1.4. Instrumenting Software 47

kieker Documentation, Release 1.15

• Click the “Next” button to start the registration process. In this step, a key will be added to the registry, hence
you are asked to confirm the modification:

48 Chapter 1. Table of Contents

kieker Documentation, Release 1.15

Click the “Yes”-button for allowing the installer to add the necessary key to the registry.

• Finally, reboot your system to make the changes take effect (you might click the “Quit”-Button of the installer
optionally before).

• After your system has been rebooted, the “program files” folder contains a new sub-directory with the following
structure, looking similar to the one of the distribution archive:

1.4. Instrumenting Software 49

kieker Documentation, Release 1.15

• In the “bin” directory, you will find several batch-files, respectively the script files for starting the weaver appli-
cation.

Weaving the “Bookstore” Example

It is assumed that you have already performed the steps described in the Installation section, so that an installed version
of the AspectLegacy exists.

The following steps are required for starting the AspectLegacy application:

1. Go to the “bin” directory which contains several batch-files (.bat), respectively those for starting the application.
You might go there by using a command-line shell or a file manager, for example “Windows Explorer”.

1. Do not execute the “avb6c.bat” file directly, since this is only the core file of all other batch-files contained in
the “bin” directory; instead, you might execute one of the following batch-files:

• The command

avb6c-cmdl.bat

simply starts the application in a command-line shell. It prints a usage-overview of the available parameters to standard
output, if no additional parameters are being passed.

• The command

avb6c-cmdl.bat -g

starts the application with its GUI. The GUI will be initialized with default properties. The input-projects and the
output-directory have to be defined using the file dialogues of the GUI, and the weaving process can be started by
clicking the “Start”-button of the GUI (note that the input projects and an output directory have to be defined therefore).
The command

avb6c-gui.bat

has been added for convenience reasons and is equivalent to this.

Now, we are going to weave the Visual Basic 6 projects of the “Bookstore” example:

50 Chapter 1. Table of Contents

https://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/wiki/dynamod.aspectlegacy/QuickStartVB6#Installation

kieker Documentation, Release 1.15

1. Go to the “examples” directory which contains the batch-files “avb6c-cmdl-example.bat” and “avb6c-gui-
example”. Again, you might go there by using a command-line shell or a file manager. The sub-folders

examplesvb6bookstore-vb6-annotated\

and

examplesvb6bookstore-vb6-aspects\

contain the annotated and aspects-projects which we are going to weave by example. Furthermore, the sub-folder

examplesvb6bookstore-vb6-weaving-result\

contains the result project as it is expected to look like after weaving.

1. Execute one of the available “.bat”-files:

• The command

avb6c-cmdl-example.bat

starts the weaving process immediately (without GUI) for the example projects and writes the weaving result to the
“Temp” folder of the local user directory. Any log-messages will be displayed as command-line output. The output
files will be located in the sub-folder

Tempbookstore-vb6-weaving-result\

of your user directory. Consequently, the full path of the result project will be (in Windows) similar to

C:UsersyournameAppDataLocalTempbookstore-vb6-weaving-resultBookstore.vbp

• The command

avb6c-gui-example.bat

starts the GUI with the example projects as default input projects and a default output directory. The weaving process
can be started immediately by clicking the “Start”-button of the GUI, and any log-messages will be displayed in the
GUI-specific logging window.

Enhanced parameters

This section contains an overview of additional parameters to be optionally used.

• The command

avb6c-cmdl.bat -g gui.properties

starts the GUI of the weaver with the (optionally) given configuration properties; this is for future purposes only.

• The command

avb6c-cmdl.bat -g gui.properties -w weaver.properties -l logging.properties

starts the GUI of the weaver as well as the command above, with individual properties for weaving and logging; these
properties might be even passed, if no GUI is used.

AspectLegacy (Visual Basic 6) User Guide

Created by Andre van Hoorn, last modified on Oct 03, 2016

1.4. Instrumenting Software 51

kieker Documentation, Release 1.15

Usage

Configuration management

For simplifying the (re-)configuration of the weaver, its properties are stored in a certain .properties-file for each
component. The following components are supported:

• The graphical user interface (GUI),

• The logging unit,

• The weaver itself.

The properties of each component are hierarchically composed; whenever the value of any property is requested, the
properties-sources will be searched in the following order:

1. User-defined properties file at a file system location (passed as a parameter to the weaver, see section Command-
line or GUI-based); the file might contain any re-definitions of the available properties of sources 2.) or 3.).

2. User-defined properties file (with a predefined name), located in the working directory of the weaver; the file
might contain any re-definitions of the available default properties of source 3.). The required names of the
properties files to be located in the working directory are as follows:

dynamod.aspectlegacy.gui.properties (default) GUI properties, for futural usage only.
dynamod.aspectlegacy.logging.properties(default) logging properties for selection of the messages to be

logged.
dynamod.aspectlegacy.weaver.properties(default) weaver properties for specification of general flags, selec-

tions etc.

Each of those files contains a set of key/value pairs, as they are used in Java resource bundles. A complete
overview of the available properties is given by the files themselves, since all properties have been commented
completely there (just have a look).

3. Default properties always present in the weaver.

Command-line or GUI-based

The weaver can be used as a command-line tool, or it can be started with a graphical user interface (GUI) alternatively.

Starting the weaver from command-line is recommended, if only default configuration properties shall be used. The
weaving process itself will be much faster, as there is no synchronization with the GUI - particularly with the log-
display - necessary. On the other hand, the specification of input values to be passed as command-line parameters, e.g.
definition of input projects as well as the output directory, might be prone to typos.

The GUI is useful for adjusting the default configuration to certain cases. It provides an output window for log-
messages and offers a much more comfortable way of weaver configuration, for example, searching for input/output
paths via file dialogues or setting flags easily by clicking their corresponding checkboxes. Furthermore, the GUI
provides an additional cleanup button for removing all lately generated output files.

In both cases, the execution of the weaver requires the declaration of certain parameters. Some of them are necessary,
and some of them are optional. The following parameters are available (denoted in short, long format):

52 Chapter 1. Table of Contents

https://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/wiki/dynamod.aspectlegacy/UserGuide#Command-lineorGUI-based
https://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/wiki/dynamod.aspectlegacy/UserGuide#Command-lineorGUI-based

kieker Documentation, Release 1.15

-s,–source-
project

Path to the source project to be woven (required, if GUI is disabled).

-a,–aspects-
project

Path to the aspects project (required, if GUI is disabled).

-o,–output-
dir

Path to the output directory for the woven project (required, if GUI is disabled).

-g,–gui (Optional) usage of the graphical user interface (GUI); as an optional parameter, a properties-file
might be passed for individual GUI-configuration.

-w,–weaver (Optional) properties file for weaver configuration.
-l,–logging (Optional) properties file for logging configuration.

The paths can either be relative to the current weaver location or absolute. The paths of the input projects might denote
directories or project-files, depending on the selected language.

Options

Line-break type

The line-break type determines the newline-format of the woven source code. Since different operating systems have
different character codes that represent a newline, is might be useful (and in many cases necessary) to select the
newline format of the weaver output code explicitly. Four types are available:

• Windows (“rn”)

• Unix (“n”)

• Mac (“r”)

• Current OS

File encoding

The encoding-option provides the selection of the encoding which is used for the source codes of a project to be woven.
This might be necessary for compiling the woven sources afterwards, since some compilers demand a certain ISO-
encoding of source code. For example, The Visual Basic 6 IDE gives error messages, in case the code to be compiled
is not ISO8859-1-encoded (Windows); if the weaver is started under Linux (UTF-8), you will need to choose explicitly
the correct encoding in that case.

Exclude patterns for files (filename filter)

If the source- and aspects-projects both contain any files of same names (in the same relative sub-directory), a file
conflict occurs. In those cases, the weaving process will stop with a conflict message, as the weaver does not know
which file to take for the result output.

The filename filter supports exclude patterns for files of certain names to avoid any of those conflicts. The patterns
must be passed as a list to the filter. Furthermore, the filter supports simple wildcards to exclude all files with matching
names from the weaving process.

The following Wildcards are available:

“?” indicates an arbitrary, single character.

“*” indicates a sequence of arbitrary characters.

1.4. Instrumenting Software 53

kieker Documentation, Release 1.15

Example: The line

“*.scc”; “textfile.txt”; “Image??.JPG”; “./parent/child”

indicates the exclusion of all files ending with “.scc” from the weaving process, as well as files of name “textfile.txt”
and files named “Image??.JPG”, with arbitrary characters at the question mark positions. Furthermore, the file “child”
contained in the sub-directory “parent” will be excluded.

Wildcards are allowed in single file-/directory-names, but not in full file-paths (yet?). The wildcards can be combined
in an arbitrary way, for example:

image?*.jpg

sorts out all .jpg-images with at least one character behind the “image” token in their name, followed by an optional
sequence of further characters.

Verification options

The following verification tests might be optionally done within the weaving process:

• Project directories are not allowed to be the same:

If enabled, the weaver will test on start whether the project directories do not denote the same file system location.
This test should be always enabled, since the source- and aspects-projects generally have to be located in different
directories.

• Files must be located in their base directories:

If enabled, the weaver will stop its work whenever a file to be accessed is located neither in the source-project directory
nor in the directory of the aspects-project. This option is for futural purposes only.

• Files of the same name are not allowed to be in both directories:

If enabled, the weaver ensures that the files to be woven or copied from the source- and aspects-projects differ from
each other regarding their name. This test will be done for each file if and only if the file has not been filtered out (see
section Exclude patterns for files (filename filter)).

• References have to be valid:

If enabled, the weaver will finally test whether all files of the aspects-project, referenced by any annotations, have been
successfully copied to output directory.

Additional language-dependent tests might be necessary, for example, the requirement of Visual Basic 6 project-
files ending with “.vbp”; those tests have to be done in the upper, language-dependent layer (see section Layered
architecture of the Developer Guide).

Weaver options

The following weaver options are available:

• Overwrite output files:

If enabled, existing files located in the output directory will be overwritten with files of same name. If disabled, the
weaver will stop its work in case a conflict with an existing file occurs.

• Add info-marks:

If enabled, informational comments will be inserted above each transformed code-block.

• Copy all directories:

54 Chapter 1. Table of Contents

https://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/wiki/dynamod.aspectlegacy/UserGuide#Excludepatternsforfilesfilenamefilter
https://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/wiki/dynamod.aspectlegacy/DeveloperGuide#Layeredarchitecture
https://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/wiki/dynamod.aspectlegacy/DeveloperGuide#Layeredarchitecture
https://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/wiki/dynamod.aspectlegacy/DeveloperGuide

kieker Documentation, Release 1.15

If enabled, (possibly existing) empty directories will be copied from the source projects to the output directory. If
disabled, empty directories will be ignored.

• Accept hidden files:

If enabled, hidden files will be included to the weaving process.

• Clean-up on error:

If enabled, all created files will be deleted immediately after weaving has failed. If disabled, the created (but possibly
incomplete or corrupt) files will be left in the output directory.

• Compile after weaving:

If enabled, the result source codes written to the output directory will be compiled immediately after weaving; external
compilers or IDEs might be required for this step.

Logging options

The following logging options are available:

• Log compiler messages:

Enables the logging of informations submitted by the compiler unit, whenever the resulting source code is going to be
compiled.

• Log weaver file-access messages:

Enables the logging of informations submitted by the weaver, whenever it is going to copy or modify a file.

• Log verification messages:

Enables the logging of informations submitted by the verification unit, whenever a verification test is going to be done.

• Log code-transformation messages:

Enables the logging of informations submitted by the code-transformation unit, whenever an annotation is going to be
transformed, variables are going to be inserted etc.

• Log clean-up messages:

Enables the logging of informations submitted by the clean-up unit, whenever a file or directory is going to be deleted,
or even if one cannot be deleted.

The Graphical User Interface (GUI)

When the weaver application is started with the “-g” parameter (see the Quickstart for Visual Basic 6), the following
configuration window will be displayed:

1.4. Instrumenting Software 55

https://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/wiki/dynamod.aspectlegacy/QuickStartVB6

kieker Documentation, Release 1.15

The initial settings will be in accordance with the configuration properties, as they are defined by default or transmitted
by the user (see section Configuration management).

The GUI has a “top-down” design. That is, the base settings (considered language, text- or AST-based weaving
type, location of project files in the file system) have to be configured in the upper part of the GUI, before the possibly
language- and weaving type-specific weaver-, verification- and logging-options should be set, as well as further options
in the middle part. Below the options part, a control panel contains buttons for starting and stopping the weaving
process, as well as cleaning up files or exiting the application. Finally, the bottom part of the GUI contains a log-
window for showing all information generated by the weaver.

The base settings need to be initialized with values for the following:

56 Chapter 1. Table of Contents

https://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/wiki/dynamod.aspectlegacy/UserGuide#Configurationmanagement

kieker Documentation, Release 1.15

• Language (to be considered for weaving, e.g. Visual Basic 6, COBOL, . . .)

• Weaving type (text- or AST-based)

• Projects (respectively their locations in the file system)

For setting the language, a combo-box is provided, which contains all languages supported by the weaver:

There must be at least one supported language available; if no further languages are supported, the combo-box is
disabled, and the only supported language will be selected automatically.

The weaving-type must be selected by clicking the related radio button; currently, only text-based weaving is available,
so this is for futural usage only:

For defining the locations of the projects within the file system, the GUI provides file-choosers, which will be shown
whenever one of the “Select”-buttons is being clicked:

1.4. Instrumenting Software 57

kieker Documentation, Release 1.15

Some language like Visual Basic 6 need project-files, other languages do not. It depends on the selected language
whether a project-file or a project directory must be determined.

The options need to be initialized with values for the following:

• Weaver options

• Verification Options

• Logging options

Since all of these option values are boolean, the related part of the GUI contains a tabbed overview, with a tab for each
option group, supporting check-boxes for setting the values easily:

Furthermore, the options panel provides input masks for the encoding type as well as for the line-break type to be
used:

58 Chapter 1. Table of Contents

kieker Documentation, Release 1.15

Finally, an input field for exclude file patterns is included (see section Exclude patterns for files (filename filter)):

The control panel holds the control for all processes to be started or stopped:

1.4. Instrumenting Software 59

https://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/wiki/dynamod.aspectlegacy/UserGuide#Excludepatternsforfilesfilenamefilter

kieker Documentation, Release 1.15

The following options are available:

Start
• Start the weaving process.

Cleanup files
• Delete all newly created files/directories of the

latest weaving-process; this will not delete any
files/directories, which existed already before.

Clear log
• Clear the logging display (see section Logging

window).

Exit
• Quit application.

The logging window displays the information generated by any running task of the weaver:

The content will be displayed multi-coloured, whereas the colours are assigned as follows:

60 Chapter 1. Table of Contents

kieker Documentation, Release 1.15

Black
• General informations (e.g. confirmation message

for a finished process).

Light red
• Fatal errors (whenever an exception makes the

weaver stopping an operation).

Optional log-messages (see section Logging options):

Dark red
• Clean-up messages.

Green
• Compiler messages.

Purple
• Verification messages.

Dark blue
• Code-transformation messages.

Light blue
• Weaver file-access messages.

Limitations / Future Work

As a futural feature, weaving might be done text-based or AST-based (see section Weaving type)). The following
section describes the main differences between both types.

Text-based weaving

In the text-based weaving mode, the weaver will scan the source code line-by-line and generate the transformed code
“on the fly”, without syntax parsing. Syntax analysis is restricted to single lines, as they are read while weaving.

AST-based weaving (futural feature)

In case AST-based weaving is selected, the source code of the input projects will be parsed for generation of an
abstract syntax tree. This enables the detection of multiple-rows-comments and consequently the detection of line-
breaks, GOTOs etc.

Text-based weaving vs. AST-based weaving

Text-based weaving is strongly restricted, since the source code is considered only as plain text. There is no extensive
analysis of syntax/semantics, hence even the partial analysis of the source code is difficult or not possible. For example,
in languages like C/C++ or Java, where comments might be nested or be wrapped over several lines, no certain
conclusion can be drawn about a single text line (e.g. whether a certain line belongs to a wrapping comment, even if
the statement itself seems to be a command).

1.4. Instrumenting Software 61

https://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/wiki/dynamod.aspectlegacy/UserGuide#Loggingoptions
https://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/wiki/dynamod.aspectlegacy/UserGuide#Weavingtype

kieker Documentation, Release 1.15

Consequently, text-based weaving should be primarily used for “simple” languages, particularly for those which allow
exclusively single-line-comments (e.g. COBOL).

AST-based weaving should be used to ensure that the source code is parsed correctly, for the ability to detect “complex”
syntactical constructs split on multiple lines (comments, split commands etc.).

AspectLegacy (Visual Basic 6) Developer Guide

Layered Architecture

For adapting the weaver framework to any additional programming language, its architecture consists of a generic core
component, which serves as a base unit for any language-specific weaver adaption. Consequently, the architecture of
the weaver algorithm can be illustrated as a two-layers model, consisting of a constitutive, language-independent layer
(core) and an adapting language-dependent layer for any related programming language:

The lower layer (which can be considered a single core-component, since it is implemented as an own Java package)
provides the generic functionality, e.g. file access, search for annotations within code, verification and logging. The
upper, language-dependent layer provides the language-dependent functionality.

Additionally, an optional Graphical User Interface (GUI) is provided for simplifying the weaver configuration pro-
cess. The GUI can be seen as a third layer, covering all language-dependent implementations, since it provides the
configuration functionality for all currently supported languages:

Components of the core layer

Since the core layer (= Java package) provides the generic functionality of the weaver, it includes particularly the
search-and-insert-algorithm for text-based weaving and generic support for code compilation. Consequently, it con-
sists of two sub-components, one for the weaving process itself and another sub-component for (optionally) compiling
the result code afterwards; each of those components denotes an own Java sub-package of dynamod.aspectlegacy.core:

• Code weaving unit (package dynamod.aspectlegacy.core.weaver)

• Code compilation unit (package dynamod.aspectlegacy.core.compiler)

The weaving unit provides the generic weaving functionality, which is copying or reading files, searching annota-
tions within source code, substituting annotations with their indicated code, writing output files, verification, logging
and possible clean-up of files. It includes four sub-components, each one denoting an own Java sub-package of dy-
namod.aspectlegacy.core.weaver:

• Clean-up unit (package dynamod.aspectlegacy.core.weaver.cleanup)

62 Chapter 1. Table of Contents

kieker Documentation, Release 1.15

• File access unit (package dynamod.aspectlegacy.core.weaver.fileaccess)

• Code transformation unit (package dynamod.aspectlegacy.core.weaver.transformation)

• Verification unit (package dynamod.aspectlegacy.core.weaver.verification)

The tasks within the weaving process are assigned to the units as follows:

• The clean-up functionality includes the (optional) deletion of any files and directories which have been created
while weaving.

• The file access unit provides all input-/output-operations, where files might even denote directories. File access
includes the reading of directory content, copying files, reading (text-)file content etc.

• Code transformation is the search for annotations in a given source code and substitution of those with the code
they indicate.

• Verification is done for checking possible violations of any contrains. This includes, for example, the require-
ment of having different directories for the source- and aspects-projects, or even the existence of certain output
files.

The package for code compilation contains a facade class, which summarizes all compiler options. Since the compiler
unit makes use of the weaver unit, it additionally delegates certain method calls to the facade provided by the weaver
package.

https://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/attachment/wiki/dynamod.aspectlegacy/DeveloperGuide/
weaver_core_packages.png

Code compilation will be usually done by invoking an external compiler or IDE. Therefore, the configuration files of
the weaver might be adjusted (see section Configuration management of the User Guide).

Language-dependent enhancements through the upper layer

Adapting the core package to any certain programming language requires some work, but the aim of this framework
is to keep the implementation effort restricted to just a few classes.

Several core components contain interfaces and abstract classes with abstract methods to be implemented. Most of
these methods provide simple functionality, for example, detection of comment-indicators and removing them from
code lines; the latter being necessary for dealing with annotations as single-line-comments. The abstract methods have
to be implemented by the upper-layer classes of the weaver model, since those classes provide the language-dependent
functionality of the weaver. Additionally, certain core-interfaces define the methods which will be invoked by the code
transformation unit, whenever an annotation is to be transformed. These interfaces must be implemented, too, since
the code constructs to be inserted in place of the annotations depend on the considered language. The implementation
of the transformation part takes some effort, but afterwards the weaver is nearly complete. Finally, the set of files to
be included into the weaving process must be determined.

For each programming language to which the core package shall be adapted, the following steps must be done:

1. The (abstract) class AbstractCodeLine.java represents a single, generic code line. It contains abstract methods
for checking whether a given String is a comment, for removing a comment-indicator from a given comment-
String and for cloning a code line itself. Note that only single-line-comments are supported in text-based weav-
ing, which includes for example lines with leading “//” in Java, “REM” or “’” in Visual Basic 6, or “*” in Cobol
(see section Limitations/Future Work of the User Guide). For making this class language-dependent, the meth-
ods mentioned above must be implemented by a sub-class, related to the considered language. A good way for
implementing the required functionality of these classes is the use of regular expressions.

2. Interface ICodeLineFactory.java serves, as its name indicates, as a factory for code lines. It provides methods
for creating instances of concrete AbstractCodeLine-subclasses, implemented in step 1. The implementation of
the factory-methods is mostly trivial (just return new instances of code lines).

1.4. Instrumenting Software 63

https://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/attachment/wiki/dynamod.aspectlegacy/DeveloperGuide/weaver_core_packages.png
https://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/attachment/wiki/dynamod.aspectlegacy/DeveloperGuide/weaver_core_packages.png
https://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/wiki/dynamod.aspectlegacy/UserGuide#Configurationmanagement
https://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/wiki/dynamod.aspectlegacy/UserGuide
https://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/wiki/dynamod.aspectlegacy/UserGuide#LimitationsFutureWork
https://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/wiki/dynamod.aspectlegacy/UserGuide

kieker Documentation, Release 1.15

3. Interface IAnnotationTransformer.java is the base interface for any code transformation indicated by an anno-
tation. Each annotation type (e.g. “CALL”, “EXECUTION”) requires a type-related annotation transformer
to be implemented, since each type indicates a different kind of code transformation. Any implementation of
this interface needs some more comprehensive effort, as the code transformation includes the substitution of
annotations with their indicated, language-dependent code.

The interface contains the transform()-method, which will be invoked by the code transformer, whenever it
finds a new annotation to be transformed. Hence, the transformer passes amongst other parameter values the
annotation itself, the index of the first line to be transformed within the original code (which is usually the line
just after the related annotation). Furthermore, it provides the original code as well as the transformed code (as it
is in the current state). The remaining parameters of this function are only relevant for recursive function-calls.

The transform()-method must analyse the given annotation and add the indicated code to the end of the currently
transformed code (note that the text-based transformation is done top-down, so additional transformed code will
just be appended to the currently existing list of transformed lines); the original code must be left unmodified.
Finally, the function has to return the index of the next line within the original code content to be examined.

4. While weaving, a certain set of files must be read and written. Therefore, the package dy-
namod.aspectlegacy.core.weaver contains the (abstract) class AbstractFileCollector.java, which defines four ab-
stract functions to be implemented for defining the considered set of files:

• getWeavableMainProjectFiles()

• getMainProjectFilesToBeCopied()

• getWeavableAspectProjectFiles()

• getAspectProjectFilesToBeCopied()

The getWeavableFiles()-methods must return the lists of source-files contained in the main/aspects projects, and
the getProjectFilesToBeCopied()-methods have to return the “non-weavable” files, like images, audio-files etc.;
the sets of files returned by these methods must be disjunct, and their union must include all required files for
generating the output project.

The class FileCollectorAdapter.java of the package dynamod.aspectlegacy.core.weaver provides methods for
collecting the required files by their file endings from certain directories.

Besides the transformation of annotations, additional (language-dependent) transformation might be necessary, de-
pending on the chosen language (e.g. insertion of new, global variables). Therefore, the visibility of certain methods
in class CodeTransformer.java of the core.transformation package is “protected”, so that these methods can be accessed
by any sub-class (see comments within the source code).

Once you have done the steps above, the abstract classes

• dynamod.aspectlegacy.core.weaver.AbstractAspectWeaverCreator.java and

• dynamod.aspectlegacy.core.compiler.AbstractCompiler.java

have to be implemented. The implementation of the abstract methods within these classes is mostly trivial (just
return new instances of the classes you have implemented by doing the steps above). Additional functionality might
require the overwriting of certain methods within these classes, but this is case-dependent. For example, this includes
generating project-files (“.vbp”) for Visual Basic 6 projects as it is done in the example source code.

Note: This is legacy documentation. There might be discrepancies between the documentation and the current version
of the external software used when developing this Kieker extension.

64 Chapter 1. Table of Contents

kieker Documentation, Release 1.15

1.4.7 Kieker4NET

Kieker4NET is a Kieker adapter supporting monitoring of programming languages based on Microsoft’s .NET plat-
form. The adapter has been developed as a part of the DynaMod research project. It has been tested particularly with
C#.

..note:

This adapter has not been used for some time.

Installation of Kieker4NET

Requirements

1. ‘ JNBridgePro <http://www.jnbridge.com/>‘__ license

2. PostSharp license

JNBridge Download and Licensing

JNBridePro can be downloaded from ‘ http://www.jnbridge.com/bin/downloads.php?pr=1&id=0 <http://www.
jnbridge.com/bin/downloads.php?pr=1&id=0>‘__. You’ll receive an evaluation version with a trial license. which
will remain functional for 30 days. After having submitted a registration form, JNBridgePro is available for 32-bit and
64-bit (untested with Kieker4NET) versions.

The following JNBridePro license types are available:

1. Developer license: Required for developing Kieker4NET.

2. Deployment license: Required for distributing/installing Kieker4NET. Note, that deployment license are only
available if a developer license has been purchased before. Please note that non-OEM (default) and OEM
licenses are available.

For details on the JNBridgePro licensing, see ‘ http://www.jnbridge.com/store.htm <http://www.jnbridge.com/store.
htm>‘__.

Installing the JNBridge License

Having registered via the ‘ JNBridge download page <http://www.jnbridge.com/bin/downloads.php?pr=1&id=0>‘__,
you should receive an e-mail with more information on the product, including the activation key.

Install JNBridgePro by running the setup wizard provided by the downloaded JNBSetup6_0_x86.msi file. During the
setup wizard, you’ll have to select one of the following configurations:

1. Development configuration: deployment configuration + proxy generation tool and demos.

2. Deployment configuration, including only the Java and .NET runtime components.

The installer installs two JNBridgePro versions, one for .NET 2.0/3.0/3.5 and a second for .NET 4.0. The development
configuration is required on the machine creating the .NET proxy for the kieker-<version>.jar. It also include the
JNBridePro plugins for Visual Studio 2005, 2008, and 2010.

1.4. Instrumenting Software 65

https://en.wikipedia.org/wiki/Component_Object_Model
https://en.wikipedia.org/wiki/Component_Object_Model
http://kosse-sh.de/dynamod
http://www.jnbridge.com/
http://www.jnbridge.com/bin/downloads.php?pr=1&id=0
http://www.jnbridge.com/bin/downloads.php?pr=1&id=0
http://www.jnbridge.com/bin/downloads.php?pr=1&id=0
http://www.jnbridge.com/store.htm
http://www.jnbridge.com/store.htm
http://www.jnbridge.com/store.htm
http://www.jnbridge.com/bin/downloads.php?pr=1&id=0

kieker Documentation, Release 1.15

1.4.8 Related Topics

• instrumenting-software-adaptive-monitoring

• Creating Probes

• Creating new Event Types

1.5 Analyzing Monitoring Data

Todo: References and links must be refreshed.

In this section, we discuss the use of existing tools to analyze monitoring data, a way to compose your own analysis
based on existing Kieker analysis stages utilizing the TeeTime pipe and filter framework, and how to create new filters
within.

• analyzing-composing-analysis-tools

• analyzing-writing-your-own-analysis-stage

• architecture-java-analysis-and-tools-api

1.6 Kieker Tools

All tools can be found in the binary bundle (kieker-1.15-binaries.zip) in the tools directory. The tools
directory contains a set of tools prepacked as tar and zip archives. Each archive contains one tool with all its libraries
and start scripts. The start scripts are located in the bin directory and the libraries in the lib directory. In the tool
root directory, e.g.,trace-analysis-1.14, you can find a log4j.cfg file, used to configure the logging output
for your tool. The bin directory contains two scripts one named after the tool usable in Linux, FreeBSD, MacOS, etc.
and one with .bat extension for Windows.

To change the logging setup you can either change that file or define additional options with the JAVA_OPTS environ-
ment variable, e.g.,

export JAVA_OPTS="-Dlogback.configurationFile=/full/path/to/logger/config/
logback-trace.groovy" or use the tool specific _OPTS variable, e.g., TRACE_ANALYSIS_OPTS for the
trace-analysis tool.

Furthermore, you can use both variables to pass additional JVM parameters and options to a tool.

• kieker-tools-webgui (deprecated)

• kieker-tools-trace-analysis-tool

• kieker-tools-trace-analysis-gui (deprecated)

• kieker-tools-convert-logging-timestamps

• kieker-tools-log-replayer

• kieker-tools-collector

• kieker-tools-kdb (deprecated)

• kieker-tools-resource-monitor

• kieker-tools-irl

66 Chapter 1. Table of Contents

kieker Documentation, Release 1.15

• kieker-tools-dot-pic-file-converter

Please note there are other tools available for Kieker which are not bundled with Kieker.

1.7 Developing with Kieker

In this section we discuss how to develop your own analyses with Kieker and embed them in tools and services. We
will reference to architecture documentation and JavaDoc when needed. As this is a living software project, there
might be a discrepancy between API documentation, architecture and the documentation in this section. In that case,
always refer to the API.

• developing-with-kieker-writing-tools-and-services

• developing-with-kieker-writing-ui-and-web-tools

1.8 Extending Kieker

Sometimes a Kieker probe or a Kieker stage (filter) may not provide the necessary features you have in mind. In that
case, you can extend Kieker. In this section we explain how to extend Kieker in many different ways:

• How to write new

– Records

– Probes

– Stages

– Features of Stages

– Serializaion Formats

• How to support new programming languages

– extending-kieker-general-language-and-platform-support

– architecture-file-and-serialization-formats

1.9 Architecture

For certain parts of Kieker, we created architecture documentation to support the use of Kieker and development for
Kieker.

1.9.1 Java

• java-monitoring-api

– java-monitoring-controller-api

– java-writers-api

– java-probes-api

• java-analysis-api

– java-readers-api

1.7. Developing with Kieker 67

kieker Documentation, Release 1.15

• java-records-api

1.9.2 Generic

• architecture-file-and-serialization-formats

1.10 Lectures

This tree contains tutorials presented at events such as guest lectures, conferences, etc.

• lectures-icpe-dublin

• lectures-university-pavia

1.11 Related Work

1.11.1 Monitoring Tools (commercial / non-research)

• AppDynamics

• Btrace

• CA Wily Introscope

• DynaTrace

• Foglight

• IBM Tivoli Monitoring

• JAMon

• Java Simon - Simple Monitoring API

• JETM

• JINSPIRED JXInsight/OpenCore

• Metrics

• MonALISA: MONitoring Agents using a Large Integrated Services Architecture

• MoSKito: Health and Performance Monitoring for Java Applications

• Munin (infrastructure/system-level monitoring; similar to like Nagios?):

• New Relic

• NovaTec inspectIT

• Nagios

• Perf4J

• Replay Solutions

• RHQ

• Software Diagnostics: Application Logger

• Software-EKG

68 Chapter 1. Table of Contents

http://www.appdynamics.com/
https://kenai.com/projects/btrace
http://www.ca.com/us/application-management.aspx
http://www.dynatrace.com/de/
http://www.questsoftware.de/foglight/
http://www-01.ibm.com/software/tivoli/products/monitor/
http://jamonapi.sourceforge.net/
http://code.google.com/p/javasimon/
http://jetm.void.fm/
http://www.jinspired.com/
http://metrics.codahale.com/
http://monalisa.caltech.edu/monalisa.htm
http://www.moskito.org/
http://munin-monitoring.org/
http://newrelic.com/
http://www.novatec-gmbh.de/produkte/inspectit/
http://www.nagios.org/
http://perf4j.codehaus.org/
http://www.replaysolutions.com/
http://rhq-project.org/display/RHQ/Home
http://www.softwarediagnostics.com/solutions/application-logger/
http://qaware.de

kieker Documentation, Release 1.15

• Vector by Netflix

• Zabbix (server + infrastructure monitoring?)

1.11.2 Monitoring Tools (research)

• COMPAS JEEM (T. Parsons, A. Mos, and J. Murphy. Non-intrusive end to end run-time path tracing for J2EE
systems)

• Dyper

• Magpie (P. Barham, R. Isaacs, R. Mortier, and D. Narayanan. Magpie: Online modelling and performance-
aware systems)

• Rainbow (S.-W. Cheng. Rainbow: Cost-Effective Software Architecture-Based Self-Adaptation)

• SPASS-meter (Univ. Hildesheim, Germany)

• Libmonitor

1.11.3 Performance/Monitoring Tools Web Sites

• SPEC Research Group

• http://www.monitortools.com/

• http://www.opensourcetesting.org/performance.php

1.11.4 Dynamic Reverse Engineering Tools

• Reverse Java

1.11.5 Log Analysis

• Graylog2

1.11.6 Repositories of Performance Data

• http://trust.salesforce.com/

1.11.7 Profilers

• JBoss profiler

• JFluid/NetBeans Profiler

• Criterion

1.11.8 UML Graph Libraries

• UMLGraph

1.11. Related Work 69

http://techblog.netflix.com/2015/04/introducing-vector-netflixs-on-host.html
http://www.zabbix.com
http://cs.brown.edu/%7Espr/research/vizdyvise.html
http://www.uni-hildesheim.de/index.php?id=8807#c29149
http://dx.doi.org/10.1016/j.parco.2012.10.001
http://research.spec.org/projects/tools.html
http://www.monitortools.com/
http://www.opensourcetesting.org/performance.php
http://www.reversejava.com/reversejavahome.htm
http://www.graylog2.org/
http://trust.salesforce.com/
http://www.jboss.org/jbossprofiler
http://profiler.netbeans.org
http://www.serpentine.com/blog/2009/09/29/criterion-a-new-benchmarking-library-for-haskell/
http://www.umlgraph.org/

kieker Documentation, Release 1.15

1.11.9 Instrumentation Tools

• Pin (see also ATOM)

• DiSL

• FERRARI : Framework for Exhaustive Rewriting and Advanced Runtime Instrumentation

1.11.10 ARM: Application Response Measurement

• https://collaboration.opengroup.org/tech/management/arm/

• http://dx.doi.org/10.1109/IWSM.1998.668123

• OpenARM: http://open-arm.sourceforge.net/

1.11.11 Trace/Control Flow Analysis/Visualization

• Fraunhofer SAVE (Software Architecture Visualization and Evaluation)

– “a research prototype for goal-oriented analysis of software systems. Its primary feature is architecture
compliance checking” (http://www.eclipsecon.org/summiteurope2009/sessions?id=1055)

– “SAVE supports the analysis of runtime traces of instrumented software systems in formats based on
Eclipse TPTP (Test & Performance Tools Platform), AspeCt C (ACC), or Comma Separated Values
(CSV).” (http://www.iese.fraunhofer.de/de/Images/SAVE_e_2009_tcm122-46390.pdf)

• HPI, Computer Graphics Systems group: http://www.hpi.uni-potsdam.de/doellner/index.html

– Trümper, Jonas and Bohnet, Johannes and Döllner, Jürgen: Understanding Complex Multithreaded Soft-
ware Systems by Using Trace Visualization. In Proceedings of the ACM Symposium on Software Vi-
sualization, pp. 133-142, 2010. (http://www.hpi.uni-potsdam.de/doellner/publications/year/2010/1219/
TBD10.html)

– Trümper, Jonas and Bohnet, Johannes and Voigt, Stefan and Döllner, Jürgen: Visualization of Multi-
threaded Behavior to Facilitate Maintenance of Complex Software Systems. In Proceedings of the Inter-
national Conference on the Quality of Information and Communications Technology, pp. 325-330, 2010.
(http://www.hpi.uni-potsdam.de/doellner/publications/year/2010/1218/TBVD10.html)

• AppDynamics (Application Management for the Cloud Generation) (http://www.appdynamics.com/
products-features-and-benefits.php)

• Dr. Garbage Tools (http://drgarbagetools.sourceforge.net/, http://dx.doi.org/10.2316/P.2012.790-033)

1.11.12 Use Cases for Dynamic Analyis

• Profiler-guided optimization

• Monitoring-oriented programming

• . . .

1.11.13 Application/User-Space Monitoring in Linux

• UProbes/UTrace

• trace-cmd/libtracevents

70 Chapter 1. Table of Contents

http://www.pintool.org/
http://dx.doi.org/10.1145/2162049.2162077
http://www.inf.usi.ch/projects/ferrari/FERRARI.html
https://collaboration.opengroup.org/tech/management/arm/
http://dx.doi.org/10.1109/IWSM.1998.668123
http://open-arm.sourceforge.net/
http://www.iese.fraunhofer.de/de/schnelleinstieg/produkte/
http://www.eclipsecon.org/summiteurope2009/sessions?id=1055
http://www.iese.fraunhofer.de/de/Images/SAVE_e_2009_tcm122-46390.pdf
http://www.hpi.uni-potsdam.de/doellner/index.html
http://www.hpi.uni-potsdam.de/doellner/publications/year/2010/1219/TBD10.html
http://www.hpi.uni-potsdam.de/doellner/publications/year/2010/1219/TBD10.html
http://www.hpi.uni-potsdam.de/doellner/publications/year/2010/1218/TBVD10.html
http://www.appdynamics.com/products-features-and-benefits.php
http://www.appdynamics.com/products-features-and-benefits.php
http://drgarbagetools.sourceforge.net/
http://dx.doi.org/10.2316/P.2012.790-033
http://en.wikipedia.org/wiki/Profile-guided_optimization
http://fsl.cs.uiuc.edu/index.php/Monitoring-oriented_programming

CHAPTER 2

Licensing

Kieker is licensed under the Apache License, Version 2.0. You may obtain a copy of the license at <http://www.
apache.org/licenses/LICENSE-2.0>

The Kieker source and binary release archives include a number of third-party libraries. Ap-
pendix~ref{appendix:libraries} lists these libraries along with information on the licenses. The lib/ directory of the
release archives contains a .LICENSE file for each third-party library, pointing to the respective license text.

71

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

kieker Documentation, Release 1.15

72 Chapter 2. Licensing

CHAPTER 3

Citing Kieker

When referencing Kieker resources in your publications, we would be happy if you respected the following guidelines:

• When referencing the Kieker project, please cite our IPCE-2012 paper and/or our 2009 technical report [TR-
0921]. Also, you might want to add a reference to our web site (<http://kieker-monitoring.net/>) like

@MISC{KiekerWebSite,
author = {{Kieker Project}},
title = {Kieker web site},
year = CURYEAR,
url = {http://kieker-monitoring.net/}

}

• When referencing this user guide, e.g., when reprinting contents, please use a proper citation.

73

references/kieker-ipce-2012.bib
references/tr-0921.bib
references/tr-0921.bib
http://kieker-monitoring.net/

	Table of Contents
	Licensing
	Citing Kieker

