

Kieker Documentation

Kieker is a Java-based application performance monitoring and
dynamic software analysis framework. Monitoring adapters for other
platforms, such as C, C++, Visual Basic~6~(VB6), .NET, and COBOL, exist
as well
(Contact [http://kieker-monitoring.net/support/%7D%7BContact] us
directly if you are interested in Kieker support for other platforms).

A general introduction can be found in Introduction.

Table of Contents

	Introduction

	Getting Started

	Tutorials

	Instrumenting Software

	Analyzing Monitoring Data

	Kieker Tools

	Developing with Kieker

	Extending Kieker

	Architecture

	Lectures

	Related Work

Licensing

Kieker is licensed under the Apache License, Version 2.0. You may
obtain a copy of the license at <http://www.apache.org/licenses/LICENSE-2.0>

The Kieker source and binary release archives include a number of
third-party libraries. Appendix~ref{appendix:libraries} lists these
libraries along with information on the licenses.
The lib/ directory of the release archives contains a .LICENSE
file for each third-party library, pointing to the respective license
text.

Citing Kieker

When referencing Kieker resources in your publications, we would be
happy if you respected the following guidelines:

	When referencing the Kieker project, please cite our IPCE-2012
paper and/or our 2009 technical report [TR-0921]. Also, you might
want to add a reference to our web site
(<http://kieker-monitoring.net/>) like

@MISC{KiekerWebSite,
 author = {{Kieker Project}},
 title = {Kieker web site},
 year = CURYEAR,
 url = {http://kieker-monitoring.net/}
}

	When referencing this user guide, e.g., when reprinting contents,
please use a proper citation.

Introduction

The figure below the framework’s composition based on the two main
components KiekerMonitoringPart and KiekerAnalysisPart.

[image: _images/kieker-architecture-overview.svg]
	The KiekerMonitoringPart component is responsible for program
instrumentation, data collection, and logging. Its core is the
MonitoringController.

	The component KiekerAnalysisPart is responsible for reading,
analyzing, and visualizing the monitoring data. Its core is the
AnalysisController which manages the life-cycle of the
pipe-and-filter architecture of analysis plugins, including monitoring
readers and analysis filters.

Please note that older programs might use a AnalysisController setup
while new analyses and tools reply on Analysis and Tools API (Java).

	In case you want to learn how to apply Kieker to a Java application,
you find an tutorial under Getting Started.

	For more advanced uses you may consult Tutorials

	All tools are documented under Kieker Tools

	More documentation and API and other programming languages can be
found below

Framework Components and Extension Points

[image: Kieker Framework Overview]
Kieker framework components and extension points for custom components

The Figure above depicts the possible extension points for custom
components as well as the components which are already included in the
Kieker distribution and detailed below.

	Monitoring writers and corresponding readers for file systems
and SQL databases, for in-memory record streams (named pipes), as well
writers and readers employing Java Management Extensions (JMX) and
Java Messaging Service (JMS) technology. A special reader allows to
replay existing persistent monitoring logs, for example to emulate
incoming monitoring data—also in real-time.

	Time sources utilizing Java’s System.nanoTime() (default) or
System.current\-TimeMillis() methods.

	Monitoring record types allowing to store monitoring data about
operation executions (including timing, control-flow, and session
information), CPU and resource utilization, memory/swap usage, as well
as a record type which can be used to store the current time.

	Monitoring probes: A special feature of Kieker is the ability
to monitor (distributed) traces of method executions and corresponding
timing information. For monitoring this data, Kieker includes
monitoring probes employing AspectJ, Java EE, Servlet, Spring, and
Apache CXF technology.
Additionally, Kieker includes probes for (periodic) system-level
resource monitoring employing OSHi.

	Analysis/Visualization plugins can be assembled to pipe-and-filter
architectures based on input and output ports. The
KiekerTraceAnalysis tool is itself implemented based on Kieker
Analysis filters allowing to reconstruct and visualize architectural
models of the monitored systems, e.g., as dependency graphs,
sequence diagrams, and call trees.

Getting Started

In this section we introduce how to work with Kieker. Starting with
methods to obtain Kieker, configure and apply Kieker, and writing your
own probes and event types. We use the small sample application
Bookstore to illustrate how to work with Kieker. However, there exists a
wide variety how to apply Kieker to applications and services. We will
only cover manual and basic AspectJ instrumentation to discuss basic
concept. There is more documentation available (how-to-apply-insturmentation) which
illustrates different techniques to instrument depending on the
technology.

	Download and Extract Tutorial

	The Bookstore Example Application

	Manual Monitoring with Kieker

	AspectJ Instrumentation Example

	Using Kieker Trace-Analysis

Tutorials

Collection of reoccurring tasks when using Kieker.

	How to Apply Insturmentation

	How to contribute Documentation

	Java Servlet Container Example

	How to apply Kieker in Java EE Environments

	Tomcat

	Glassfish

	WebSphere

	JBoss (Wildfly)

	How to pass the monitoring configuration to Kieker

	How to collect Traces from Servlets

	How to perform Trace Analysis

	How to configure Kieker within Java-Applications and -Services

	How to Write Tests for Your own Kieker Probes

	How to use JMS Reader and Writer

	How to use AMQP Writer and Reader

How to Apply Insturmentation

How to contribute Documentation

Todo

This must be replaced to fit the current docuemtnation with restructured text.

Java Servlet Container Example

Using the sample Java web application MyBatis
JPetStore <http://www.mybatis.org/spring/sample.html> this example
demonstrates how to employ Kieker for monitoring a Java application
running in a Java Servlet container – in this case
Jetty <http://www.eclipse.org/jetty/>. Monitoring probes based on the
Java Servlet API, Spring and AspectJ are used to monitor execution,
trace, and session data (see also instrumenting-software-aspectj_).

Prerequisites

	Download and extract the **Kieker** binary distribution <http://kieker-monitoring.net/download/>

	The directory kieker-1.14/examples/JavaEEServletContainerExample
contains the prepared Jetty server with the MyBatis JPetStore
application and the Kieker-based demo analysis application known
from the Kieker Homepage <http://demo.kieker-monitoring.net/>.

	Switch to this directory or copy it to a suitable location.

Instrumenting Servlets

The subdirectory jetty includes the Jetty server with the JPetStore
application already deployed to the server’s webapps/ directory.
The example is prepared to use two alternative types of Kieker
probes: either the Kieker Spring interceptor (default) or the
Kieker AspectJ aspects. Both alternatives additionally use
Kieker’s Servlet filter.

Required Libraries and Kieker Monitoring Configuration

Both settings require the files aspectjweaver-1.8.2.jar and
kieker-1.14, which are already included in the webapps’s
WEB-INF/lib/ directory.
Also, a Kieker configuration file is already included in the Jetty’s
root directory, where it is considered for configuration by Kieker
Monitoring in both modes.

Servlet Filter (Default)

The file web.xml is located in the webapps’s WEB-INF/ directory.
Kieker’s Servlet filters are already enabled:

<filter>
 <filter-name>sessionAndTraceRegistrationFilter</filter-name>
 <filter-class>kieker.monitoring.probe.servlet.SessionAndTraceRegistrationFilter</filter-class>
 <init-param>
 <param-name>logFilterExecution</param-name>
 <param-value>true</param-value>
 </init-param>
</filter>
<filter-mapping>
 <filter-name>sessionAndTraceRegistrationFilter</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

This filter can be used with both the Spring-based and the AspectJ-based
instrumentation mode.

Spring-based Instrumentation (Default)

Kieker’s Spring interceptor are already enabled in the file
applicationContext.xml, located in the webapps’s WEB-INF/
directory:

<!-- Kieker's instrumentation probes based on the Spring AOP interception framework -->
<bean id="opEMII"
 class="kieker.monitoring.probe.spring.executions.OperationExecutionMethodInvocationInterceptor" />
<aop:config>
 <aop:advisor advice-ref="opEMII"
 pointcut="execution(public * org.mybatis.jpetstore..*.*(..))"/>
</aop:config>

Note

When using, for example, the @Autowired feature in your Spring
beans, it can be necessary to force the usage of CGLIB proxy objects
with <aop:aspectj-autoproxy proxy-target-class="true"/>.

AspectJ-based Instrumentation

In order to use AspectJ-based instrumentation, the following changes
need to be performed. The file start.ini, located in Jetty’s root
directory, allows to pass various JVM arguments, JVM system properties,
and other options to the server on startup. When using AspectJ for
instrumentation, the respective JVM argument needs to be activated in
this file.

The AspectJ configuration file aop.xml is already located in the
webapps’s WEB-INF/classes/META-INF/ directory and configured to
instrument the JPetStore classes with Kieker’s OperationExecutionAspectFull
aspect.

When using the AspectJ-based instrumentation, make sure to disable the
Spring interceptor in the file applicationContext.xml, mentioned
above.

	Start the Jetty server using the start.jar file (e.g., via
java -jar start.jar). You should make
sure that the server started properly by taking a look at
the console output that appears during server startup.

	Now, you can access the JPetStore application by opening the URL
http://localhost:8080/jpetstore/.
Kieker initialization messages should appear in the console output.

[image: ../_images/jpetstore-example-FFscrsh.png]

	Browse through the application to generate some monitoring data.

	In this example, Kieker is configured to write the monitoring data
to JMX in order to communicate with the Kieker-based demo analysis
application, which is accessible via <localhost:8080/livedemo/<.

	In order to write the monitoring data to the file system, the
JMX writer needs to be disabled in the file kieker.monitoring.properties,
which is located in the directory webapps/jpetstore/WEB-INF/classes/META-INF/.
After a restart of the Jetty server, the Kieker startup output includes the
information where the monitoring data is written to (should be a
kieker-<DATE-TIME>/ directory) located in the default temporary
directory.
This data can be analyzed and visualized using kieker-tools-trace-analysis-tool_.

How to apply Kieker in Java EE Environments

Depending on the configuration of the JavaEE application to be
monitored, different instrumentation technologies (e.g., Spring AOP and
SOAP/CXF interceptors) can and should be used. In this page, we show how
to use AspectJ to monitor method calls in different JavaEE environments.

Jetty

Copy kieker-1.15_aspectj.jar into a directory, where it can be accessed
by Jetty, e.g. jetty/kieker/.

Jetty is usually shipped with a configuration file start.ini in which
start parameters are defined. Add the following snippet to this file:

--exec
-javaagent:kieker/kieker-1.15_aspectj.jar
-Dkieker.monitoring.skipDefaultAOPConfiguration=true
-Daj.weaving.verbose=true

To use a custom Kieker configuration at the given location, the
following parameter can be added:

-Dkieker.monitoring.configuration=kieker/kieker.monitoring.properties

Important: Due to a bug in the parser of Jetty, a line ending with
.properties is misinterpreted and leads to an exception. We recommend to
rename the extension of Kieker’s configuration file.

To use a custom AspectJ configuration at the given location, the
following parameter can be added:

-Dorg.aspectj.weaver.loadtime.configuration=file://c:/jetty/kieker/aop.xml

Important: There seems to be problems with relative paths for
AspectJ in JavaEE environments. We recommend to use URIs instead.

Tested with JPetStore 6 and Jetty 9.2.2.

JBoss

	Needs documentation but ` NovaTec’s blog
post <http://blog.novatec-gmbh.de/analysing-kieker-with-jboss-dvdstore-sample-application/>`__
may serve as a starting point

Tomcat

Copy kieker-1.10_aspectj.jar into a directory, where it can be accessed
by Tomcat, e.g. tomcat/kieker/.

Tomcat is usually shipped with start scripts bin/catalina.(sh|.bat). Add
one of the following snippets to the correct file, depending on your
operation system:

set JAVA_OPTS=%JAVA_OPTS%
 -javaagent:%CATALINA_BASE%\kieker\kieker-1.10_aspectj.jar
 -Dkieker.monitoring.skipDefaultAOPConfiguration=true
 -Daj.weaving.verbose=true
 -Dkieker.monitoring.configuration=%CATALINA_BASE%/kieker/kieker.monitoring.properties
 -Dorg.aspectj.weaver.loadtime.configuration=...

set JAVA_OPTS=${JAVA_OPTS}
 -javaagent:${CATALINA_BASE}\kieker\kieker-1.10_aspectj.jar
 -Dkieker.monitoring.skipDefaultAOPConfiguration=true
 -Daj.weaving.verbose=true
 -Dkieker.monitoring.configuration=${CATALINA_BASE}/kieker/kieker.monitoring.properties
 -Dorg.aspectj.weaver.loadtime.configuration=...

…

	Needs documentation but
ticket/566 [http://kieker.uni-kiel.de/trac/ticket/566#comment:8]
may serve as a starting point

Glassfish

On Glassfish 4, this can be achieved with adding properties to the
domain.xml. The default domain in glassfish is normally called domain0.
Let further assume that glassfish was installed in /opt/glassfish-4.0
then the domain.xml file will be located in
/opt/glassfish-4.0/glassfish/domains/domain0/config. In that file search
for jvm-options. You will find multiple such entries between

<java-config ...>
 <jvm-options>...</jvm-options>
</java-config>

After the last entry in that XML environment, add the following lines
and adapt the paths to your situation.

<jvm-options>-javaagent:${com.sun.aas.installRoot}/lib/kieker-1.15_aspectj.jar</jvm-options>
<jvm-options>-Dkieker.monitoring.skipDefaultAOPConfiguration=true</jvm-options>
<jvm-options>-Daj.weaving.verbose=true</jvm-options>
<jvm-options>-Dkieker.monitoring.configuration=${com.sun.aas.installRoot}/kieker/kieker.monitoring.properties</jvm-options>
<jvm-options>-Dorg.aspectj.weaver.loadtime.configuration=${com.sun.aas.installRoot}/kieker</jvm-options>

WebSphere

	Needs documentation

JBoss (Wildfly)

An alternative approach to run Kieker within a JBoss environment is
described
here [https://blog.novatec-gmbh.de/analysing-kieker-with-jboss-dvdstore-sample-application/].

Requires:

	Kieker-1.13 or above (1.12 and below cause an error in JBoss
environments)

	Kieker packed as Wildfly module

	AspectJ Weaver packed as Wildfly module

Kopiere beide Module einfach in das folgende Wildfly-Verzeichnis:

modules/system/layers/base

Kopiere die Dateien kieker.properties und aop.xml in das
(neue) Verzeichnis “kieker” auf oberster Ebene von Wildfly. Passe nun
den Ausgabepfad von Kieker an und schränke das Instrumentieren auf den
gewünschten Paketnamen ein.

[in der Datei standalone.xml]

	Unter dem folgenden, vorhandenen Subsystem müssen die beiden, neuen
Module als globale Module registriert werden:

<subsystem xmlns="urn:jboss:domain:ee:4.0">
<global-modules>
 <module name="kieker"/>
 <module name="org.aspectj"/>
</global-modules>

[in der Datei standalone.conf]

	Dort, wo die Systempakete deklariert werden, müssen die folgenden
ergänzt werden: org.jboss.logmanager, com.manageengine, org.aspectj,
kieker. Du musst im Folgenden nur darauf achten, dass ich
Windows-Syntax für die Skriptbefehle genutzt habe.

set "JAVA_OPTS=%JAVA_OPTS% -Djboss.modules.system.pkgs=org.jboss.byteman,org.jboss.logmanager,com.manageengine,org.aspectj,kieker"

set "WILDFLY=I:\Software-Engineering\wildfly-10.1.0.Final"

	Weiterhin muss der Aspectjweaver als Javaagent eingetragen werden und
für Wildfly entsprechende notwendige Ergänzungen vorgenommen werden,
die das Verwenden von AspectJ überhaupt erst ermöglichen:

set "JAVA_OPTS=%JAVA_OPTS% -javaagent:%WILDFLY%/modules/system/layers/base/org/aspectj/main/aspectjweaver.jar"

set "JAVA_OPTS=%JAVA_OPTS% -Djava.util.logging.manager=org.jboss.logmanager.LogManager"

set "JAVA_OPTS=%JAVA_OPTS% -Xbootclasspath/p:%WILDFLY%/modules/system/layers/base/org/jboss/logmanager/main/jboss-logmanager-2.0.4.Final.jar;%WILDFLY%\modules\system\layers\base\kieker\main\kieker-1.15.jar;%WILDFLY%\modules\system\layers\base\org\aspectj\main\aspectjweaver.jar"

	Anschließend werden Einstellungen für das Monitoring durch Kieker
vorgenommen:

set "JAVA_OPTS=%JAVA_OPTS% -Dkieker.monitoring.configuration=%WILDFLY%/kieker/kieker.monitoring.1.13.properties"

set "JAVA_OPTS=%JAVA_OPTS% -Dkieker.monitoring.skipDefaultAOPConfiguration=true"

set "JAVA_OPTS=%JAVA_OPTS% -Daj.weaving.verbose=true"

set "JAVA_OPTS=%JAVA_OPTS% -Dorg.aspectj.weaver.loadtime.configuration=file:%WILDFLY%/kieker/aop.xml"

Wenn du nun Wildfly startest, sollten keine Fehler erscheinen. Da das
Instrumentieren erst beim Laden der entsprechenden Klassen erfolgt,
siehst du an dieser Stelle nur Konsolenausgaben von AspectJ. Erst wenn
du das Szenario ausführst, wird Kieker gestartet und der Log-Ordner
angelegt und mit Daten gefüllt.

How to pass the monitoring configuration to Kieker

The Kieker Monitoring Controller checks several locations for the kieker
configuration. Initially, Kieker tries to
read META-INF/kieker.monitoring.default.properties file. If it
cannot read this file it uses the built in defaults for the
configuration. Subsequently, Kieker checks whether the
kieker.monitoring.configuration JVM parameter is set and tries to
load the configuration from there.

To provide an alternative location for a Kieker configuration in context
of command line applications, please
add -Dkieker.monitoring.configuration=FULL_PATH_TO_LOCATION to the
java set of parameters, e.g.,
java -Dkieker.monitoring.configuration=/myconfiguration -jar MyApplication.jar

For war file, add your configuration to the META-INF folder or pass
the property to the server, e.g., tomcat.

How to collect Traces from Servlets

While we use Jetty in this tutorial, other servlet containers can also
be used. Information on them can be found in
How to apply Kieker in Java EE Environments

Prerequisites

	Use Java 8 (it may work with newer versions, see below)

	Get the iObserve variant of the JPetStore from JPetStore-6 <https://github.com/research-iobserve/jpetstore-6>
Use git clone https://github.com/research-iobserve/jpetstore-6.git
to obtain the JPetStore

	Download Jetty <https://www.eclipse.org/jetty/download.html>. Use
a version which is compatible with your Java version. Kieker 1.14
with AspectJ will not work with Java 11. This will change in the
1.15 which supports Java 11.

Instrumenting Servlets

Running an Example Application

How to perform Trace Analysis

Todo

Fix internal references.

Kieker trace-analysis implements the special feature of Kieker
allowing to monitor, analyze, and visualize (distributed) traces of
method executions and corresponding timing information. For this
purpose, it includes monitoring probes employing AspectJ, Java Servlet,
Spring, and Apache CXF technology. Moreover, it allows to reconstruct
and visualize architectural models of the monitored systems, e.g., as
sequence and dependency diagrams.

In this tutorial, we will instrument a Java Servlet application with
interceptors and AspectJ. For other options to generate traces in Java
and other programming languages, please consult the respective pages in
How to perform Trace Analysis
and How to apply Kieker in Java EE Environments.

We use the OperationExecutionRecord from the controlflow package
to collect trace information. There is also an alternative
flow-based set of monitoring events which can be used alternatively.
However, they are not used in this tutorial. More information on
monitoring traces can be found in tutorials-how-to-perform-trace-analysis.

The OperationExecutionRecord attributes operationName, tin,
and tout represent the full qualified name of the operation
including the class name, the time before execution of the operation and
the time after the execution, respectively (see JavaDoc
OperationExecutionRecord [http://api.kieker-monitoring.net/1.14/kieker/common/record/controlflow/OperationExecutionRecord.html]).
The attributes traceId and sessionId are used to store trace and
session information; eoi and ess contain control-flow
information needed to reconstruct traces from monitoring data. For
details please refer to the technical report and
JavaDoc [http://api.kieker-monitoring.net/1.14/kieker/common/record/controlflow/OperationExecutionRecord.html].

Prerequisites

	A basic understanding of how Kieker performs monitoring (see Getting Started)

	Basic knowledge of AspectJ, i.e., that it is an aspect-oriented
approach and technology

	Basic knowledge what a Servlet application is

	Docker, in case you want to use docker to run the example (optional)

	Download the Servlet Engine
Jetty [https://www.eclipse.org/jetty/download.html] (tested with
9.4.30)

Getting JPetStore

Checkout the JPetStore
here [https://github.com/research-iobserve/jpetstore-6] and switch
to the single-jpetstore branch, for a vanilla JPetStore. Please note:
There is also a variant pre-configured with Kieker probes utilizing
the flow events instead of the controlflow events used in this tutorial.

git clone https://github.com/research-iobserve/jpetstore-6.git

cd jpetstore-6
git checkout single-jpetstore

Now it is time to check whether your version compiles with

mvn compile package

This produces an output similar to

[INFO]
[INFO] --- maven-war-plugin:3.1.0:war (default-war) @ jpetstore ---
[INFO] Packaging webapp
[INFO] Assembling webapp [jpetstore] in [/home/user/jpetstore-6/target/jpetstore]
[INFO] Processing war project
[INFO] Copying webapp resources [/home/user/jpetstore-6/src/main/webapp]
[INFO] Webapp assembled in [97 msecs]
[INFO] Building war: /home/user/jpetstore-6/target/jpetstore.war
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 19.034 s
[INFO] Finished at: 2020-06-15T13:22:23+02:00
[INFO] --

The resulting war file is located in target inside the main project
directory jpetstore-6 and named jpetstore.war.

Instrumenting JPetStore

JPetStore is a small demonstration example of a Servlet based
application. That means external HTTP requests to the application
trigger a trace through the application. Therefore, we must instrument
the incoming request and all subsequent method calls through the
application. Thus, we must use Servlet interceptors and instrument all
methods, which we can do with AspectJ.

Instrumenting Servlet Requests

The Java Servlet API includes the javax.servlet.Filter interface.
It can be used to implement interceptors for incoming HTTP requests.
Kieker provides a SessionAndTraceRegistrationFilter probe which
implements the javax.servlet.Filter interface. It initializes the
session and trace information for incoming requests. If desired, it
additionally creates an OperationExecutionRecord for each
invocation of the filter and passes it to the MonitoringController.
To integrate the interceptor into the application, you must add a filter
configuration to the web.xml file. The web.xml file is located in
jpetstore-6/src/main/webapp/WEB-INF

<filter>
 <filter−name>sessionAndTraceRegistrationFilter</filter−name>
 <filter−class>kieker.monitoring.probe.servlet.SessionAndTraceRegistrationFilter</filter−class>
 <init−param>
 <param−name>logFilterExecution</param−name>
 <param−value>true</param−value>
 </init−param>
</filter>
<filter−mapping>
 <filter−name>sessionAndTraceRegistrationFilter</filter−name>
 <url−pattern>/∗</url−pattern>
</filter−mapping>

In the above snippet, the Kieker class
kieker.monitoring.probe.servlet.SessionAndTraceRegistrationFilter
implementing the probe is registered in the Servlet application and the
filter-mapping assigns it to all Servlet URLs.

Instrumenting Method Calls

While the Servlet filter above will collect all HTTP requests to the
application, it cannot collect the traces within the application.
Therefore, we have to apply probes to all methods. In this tutorial, we
use AspectJ and Kieker’s AspectJ probes to accomplish this goal.

Kieker includes the AspectJ-based monitoring
probes OperationExecutionAspectAnnotation, OperationExecu-tionAspectAnnotationServlet, OperationExecutionAspectFull,
and OperationExecutionAspectFullServlet which can be woven into
Java applications at compile time and load time. These probes monitor
method executions and corresponding trace and timing information. The
probes with the postfix Servlet additionally store a session
identifier within the OperationExecutionRecord. For this tutorial,
we use OperationExecutionAspectFull probe to collect trace
information.

To configure AspectJ, we have to create an aop.xml file and place it
src/main/resources within the jpetstore-6 project directory. It
contains the following lines:

<!DOCTYPE aspectj PUBLIC "−//AspectJ//DTD//EN" "http://www.aspectj.org/dtd/aspectj_1_5_0.dtd">
<aspectj>
 <weaver options="">
 <include within="org.mybatis..*"/>
 </weaver>
 <aspects>
 <aspect name="kieker.monitoring.probe.aspectj.operationExecution.OperationExecutionAspectFull"/>
 </aspects>
</aspectj>

Line 5 specifies which classes and methods within the project shall be
instrumented. The org.mybatis..* limits the instrumentation to
classes of the project itself and ignores all imported jar files, as we
are not interested to clutter the results with API internals. Line 9
selects the aspect OperationExecutionAspectFull. As indicated by
its name, this aspect makes sure that every method within the included
classes/packages will be instrumented and monitored.

Adding Dependencies

The JPetStore example uses Maven to build the application. Therefore, we
have now to adapt the build configuration to use AspectJ and Kieker.
Maven is configured by a pom.xml file located in the project root
directory.

Open the pom.xml in an editor. Here you must add

	the dependencies for Kieker and AspectJ, and

	the AspectJ compile time weaving.

In the dependency section of the pom.xml add:

<dependency>
 <groupId>net.kieker-monitoring</groupId>
 <artifactId>kieker</artifactId>
 <version>1.14</version>
</dependency>
<dependency>
 <groupId>org.aspectj</groupId>
 <artifactId>aspectjrt</artifactId>
 <version>1.8.7</version>
</dependency>

In the build section of the pom.xml add:

<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>aspectj-maven-plugin</artifactId>
 <version>1.8</version>
 <configuration>
 <source>1.7</source>
 <target>1.7</target>
 <complianceLevel>1.7</complianceLevel>
 <aspectLibraries>
 <aspectLibrary>
 <groupId>net.kieker-monitoring</groupId>
 <artifactId>kieker</artifactId>
 </aspectLibrary>
 </aspectLibraries>
 <xmlConfigured>${basedir}/src/main/resources/aop.xml</xmlConfigured>
 <sources>
 <source>
 <basedir>${basedir}/src/main/java</basedir>
 <includes>
 <include>**/**.java</include>
 </includes>
 </source>
 </sources>
 </configuration>
 <executions>
 <execution>
 <goals>
 <goal>compile</goal>
 </goals>
 </execution>
 </executions>
</plugin>

Please note that the src/main/resources/aop.xml is explicitly
specified in the configuration.

Configuring Kieker

The last step is to place a Kieker configuration file within the
application to instruct the MonitoringController where and how to
store the monitoring data. The kieker.monitoring.properties file
should contain the following information and must be placed in
src/main/resources/META-INF/ within the project directory.

The name of the Kieker instance.
kieker.monitoring.name=KIEKER

Whether a debug mode is activated.
kieker.monitoring.debug=false

Enable monitoring after startup
kieker.monitoring.enabled=true

The name of the VM running Kieker or empty (will automatically be
resolved)
kieker.monitoring.hostname=

Automatically add a metadata record
kieker.monitoring.metadata=true

Enables the automatic assignment
kieker.monitoring.setLoggingTimestamp=true

Register shutdown hook
kieker.monitoring.useShutdownHook=true

Do not use JMX
kieker.monitoring.jmx=false

The size of the thread pool used to execute registered periodic sensor jobs.
kieker.monitoring.periodicSensorsExecutorPoolSize=0

Disable adaptive monitoring.
kieker.monitoring.adaptiveMonitoring.enabled=false

Timer to use
kieker.monitoring.timer=kieker.monitoring.timer.SystemNanoTimer

Report timestamps in
Accepted values:
0 - nanoseconds
1 - microseconds
2 - milliseconds
3 - seconds
kieker.monitoring.timer.SystemMilliTimer.unit=0

Writer configuration
kieker.monitoring.writer=kieker.monitoring.writer.filesystem.FileWriter

output path
kieker.monitoring.writer.filesystem.FileWriter.customStoragePath=$LOGGING_DIR/
kieker.monitoring.writer.filesystem.FileWriter.charsetName=UTF-8

Number of entries per file
kieker.monitoring.writer.filesystem.FileWriter.maxEntriesInFile=25000

Limit of the log file size; -1 no limit
kieker.monitoring.writer.filesystem.FileWriter.maxLogSize=-1

Limit number of log files; -1 no limit
kieker.monitoring.writer.filesystem.FileWriter.maxLogFiles=-1

Map files are written as text files
kieker.monitoring.writer.filesystem.FileWriter.mapFileHandler=kieker.monitoring.writer.filesystem.TextMapFileHandler

Flush map file after each record
kieker.monitoring.writer.filesystem.TextMapFileHandler.flush=true

Do not compress the map file
kieker.monitoring.writer.filesystem.TextMapFileHandler.compression=kieker.monitoring.writer.compression.NoneCompressionFilter

Log file pool handler
kieker.monitoring.writer.filesystem.FileWriter.logFilePoolHandler=kieker.monitoring.writer.filesystem.RotatingLogFilePoolHandler

Text log for record data
kieker.monitoring.writer.filesystem.FileWriter.logStreamHandler=kieker.monitoring.writer.filesystem.TextLogStreamHandler

Do not compress the log file
kieker.monitoring.writer.filesystem.TextLogStreamHandler.compression=kieker.monitoring.writer.compression.NoneCompressionFilter

Flush log data after every record
kieker.monitoring.writer.filesystem.FileWriter.flush=true

buffer size. The log buffer size must be big enough to hold the biggest record
kieker.monitoring.writer.filesystem.FileWriter.bufferSize=81920

Key for the writer configuration are two properties
kieker.monitoring.writer which selects the writer and
kieker.monitoring.writer.filesystem.FileWriter.customStoragePath
which specifies where the data shall be stored. In this tutorial, we use
the kieker.monitoring.writer.filesystem.FileWriter which can write
text and binary log files and even compress the output if necessary. If
no customStoragePath is specified, Kieker will write to /tmp on
Unix machines or to the respective system wide directory for temporary
files. In the above code snippet, we specified $LOGGING_DIR as location
for log files. Please choose an appropriate path within your system.

Build and Run

To build the example got to the project root directory and type:

mvn clean compile package

This will produce a jpetstore.war file located in the target
directory of the jpetstore-6 project.

To run the JPetStore:

	Download Jetty in case you have not done this already.

	Unpack Jetty next to the jpetstore-6 project directory, e.g.,

drwxr-xr-x 11 user example 4096 Jun 15 14:32 jetty-distribution-9.4.30.v20200611
drwxrwxr-x 7 user example 4096 Jun 15 13:22 jpetstore-6

	Copy the jpetstore.war to the jetty webapps directory

cp jpetstore-6/target/jpetstore.war jetty-distribution-9.4.30.v20200611/webapps

	Switch to the Jetty directory and start the application

cd jetty-distribution-9.4.30.v20200611

java -jar start.jar

	Now you can access the JPetStore from your browser with
http://localhost:8080/jpetstore [https://kieker-monitoring.atlassian.net/wiki/spaces/DOC/pages/655950052/Instrumentation+with+CXF+Interceptors]

	While you are using the application logging information appears in a
newly created Kieker logging directory, e.g.,

	kieker-20200615-130444-341575577055999-UTC--KIEKER/

	kieker-20200615-130444372-UTC-001.dat

	kieker.map

	Feel free to explore the whole JPetStore. While browsing through the
shop, you will notice that the log files will grow over time.

Analyzing Traces

Monitoring data including trace information can be analyzed and
visualized with the Kieker trace-analysis tool which is included
in the Kieker binary distribution as well. A the tool outputs dot
and pict files, tools to view such files are required. We usually use
GraphViz and GnuPlot utils.

In order to use this tool, it is necessary to install two third-party
pro-grams:

	GraphViz A graph visualization software which can be down-loaded
from http://www.graphviz.org

	GNU PlotUtils A set of tools for generating 2D plotgraphics which
can be downloaded
from http://www.gnu.org/software/plotutils/ (for Linux) and
from http://gnuwin32.sourceforge.net/packages/plotutils.htm (for Windows).

	ps2pdf Theps2pdftool is used to convert ps files to pdf
files.

Under Windows it is recommended to add the bin/ directories of
both tools to the “path” environment variable. It is also possible that
the GNU PlotUtils are unable to process sequence diagrams. In this case
it is recommended to use the Cygwin port of PlotUtils.

Once both programs have been installed, the Kieker
trace-analysis tool can be used. It can be found in the tools
directory of the Kieker binary release. Unpack the
trace-analysis-1.14.zip alongside the jpetstore-6 directory.
Start scripts can then be found in
trace-analysis-1.14/bin/trace-analysis (Unix) and
trace-analysis-1.14/bin/trace-analysis.bat (Windows).
Non-parameterized calls of the scripts print all possible options on the
screen.The commands shown in Listings below generate a sequence diagram
as well as a call tree to an existing directory named out/. The
monitoring data is assumed to be located in the logging directory, e.g.,
kieker-20200615-130444-341575577055999-UTC--KIEKER/ alongside the
jpetstore-6 directory.

Before executing the trace-analysis, you need to create the out/
directory alongside the jpetstore-6 directory.

Unix version

trace-analysis-1.14/bin/trace-analysis -inputdirs kieker-20200615-130444-341575577055999-UTC--KIEKER \
 -outputdirout/ \
 -plot-Deployment-Sequence-Diagrams–plot-Call-Trees–short-labels

Windows version

trace-analysis-1.14/bin/trace-analysis.bat -inputdirs kieker-20200615-130444-341575577055999-UTC--KIEKER
 -outputdir out\
 -plot-Deployment-Sequence-Diagrams–plot-Call-Trees–short-labels

The resulting contents of the out/ directory should be similar to
the following tree:

	out/

	deploymentSequenceDiagram-6120391893596504065.pic

	callTree-6120391893596504065.dot

	system-entities.html

The .pic and .dot files can be converted into other formats,
such as .pdf, by using the GraphViz and Plot Utils
tools dot and pic2plot. Type the following to generate PDF
file from the graphics.

dot callTree−6120391893596504065.dot -T pdf -o callTree.pdf
pic2plot deploymentSequenceDiagram−6120391893596504065.pic-T pdf > sequenceDiagram.pdf

The scripts dotPic-fileConverter.sh and dotPic-fileConverter.bat convert
all .pic and .dot in a specified directory. The scripts can
be found in the bin directory of the Kieker binary distribution.

Example Outputs of the Trace Analysis

How to configure Kieker within Java-Applications and -Services

There are three scenarios where Kieker configuration parameters can be
used Java applications and must be configured on command line or startup
scripts.

	Normal Java application without Kieker parts which should be
instrumented and observed

	Java applications which has already Kieker integrated or woven in
with AspectJ

	Java application which uses Kieker directly and accepts an Kieker
property file

Normal Java Application

This works largely like the second option. However, you have to add the
Kieker agent to the java invocation.

Application with integrated Kieker at Compile or Bundling Time

In case you have an application which need Kieker configuration
parameters set, but which does not provide a command line option for
such configuration file can add
-Dkieker.monitoring.configuration=$CONFIGUATION_FILE to the java
invocation statement. In many
gradle [https://docs.gradle.org/current/userguide/application_plugin.html]-based
builds this can be achieved by using the *_OPTS environment
variable. The * represents the name of the tool.

Kieker-based Application

Add your configuration parameters to the application’s configuration
file

How to Write Tests for Your own Kieker Probes

Writing your own probes with Kieker is quite simple. However, testing
them requires additional insight into Kieker which require reading a lot
of source code. As this is an unpleasant task, I collected some basic
ideas in this how-to.

Let say you have a written a probe ExampleProbe:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

	import kieker.common.record.IMonitoringRecord;
import kieker.common.record.flow.trace.TraceMetadata;
import kieker.common.record.flow.trace.operation.BeforeOperationEvent;
import kieker.monitoring.core.controller.IMonitoringController;
import kieker.monitoring.core.controller.MonitoringController;
import kieker.monitoring.core.registry.TraceRegistry;

public class ExampleProbe {
 private final IMonitoringController ctrl = MonitoringController.getInstance();
 private final TraceRegistry registry = TraceRegistry.INSTANCE;

 public ExampleProbe() {
 }

 public void takeMeasurement(final String operationSignature,
 final String classSignature) {

 /** collect event data. */
 final TraceMetadata trace = this.registry.getTrace();
 final long timestamp = this.ctrl.getTimeSource().getTime();
 final long traceId = trace.getTraceId();
 final int orderIndex = trace.getNextOrderId();

 /** create event. */
 final IMonitoringRecord event = new BeforeOperationEvent(timestamp,
 traceId, orderIndex, operationSignature,
 classSignature);

 /** log event. */
 this.ctrl.newMonitoringRecord(event);
 }
}

When you use this in an application, the IMonitoringController will
refer to a singleton within the application, which is great within an
application. You can pass a configuration via a file at a default
location or by specifying an environment variable. Unfortunately, this
makes is more complicated for testers to pass their configuration to the
controller. In case you instantiate a controller in the test class, it
will create a separate controller for the test class. Fortunately, there
is a way around this limitation. As the MonitoringController factory
method checks on environment variables, you can set them in a test
statically. Therefore, they are set before creating the first
MonitoringController.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

	package example.probe.test;

import kieker.monitoring.core.configuration.ConfigurationKeys;
import org.junit.Test;

public class ExampleProbeTest {

 /**
 * Set system properties before instantiation anything.
 * Otherwise the MonitoringController will not see the
 * configuration.
 */
 static {
 System.setProperty(ConfigurationKeys.CONTROLLER_NAME, "ExampleProbeTest Controller");

 System.setProperty(ConfigurationKeys.WRITER_CLASSNAME,
 TestDummyWriter.class.getCanonicalName());
 }

 @Test
 public void test() {
 final ExampleProbe probe = new ExampleProbe();
 probe.takeMeasurement("myOperation()", "example.ExampleClass");

 /** first record. */
 final IMonitoringRecord metadata = TestDummyWriter.getEvents().get(0);

 Assert.assertEquals("First record should be KiekerMetaData",
 metadata.getClass().getName(),
 KiekerMetadataRecord.class.getName());

 /** second record. */
 final IMonitoringRecord beforeEvent =
 TestDummyWriter.getEvents().get(1);

 Assert.assertEquals("First record should be KiekerMetaData",
 beforeEvent.getClass().getName(),

 BeforeOperationEvent.class.getName());
 }
}

In this test class, we set two properties. Firstly, we specify a
controller name. This helps when debugging tests, as we can check
whether the used controller is really the one with the internal name
“ExampleProbeTest Controller”. Secondly, we set the writer class. By
default Kieker would write into a text log file. However, during testing
we do not want that Kieker creates a directory and stores log
information there. Instead we want to access logged data
programmatically. The TestDummyWriter allows to access events from a
statically defined internal list, which is most convenient for testing.
The list is statically accessed with TestDummyWriter.getEvents().
The first event is always KiekerMetadataRecord, except you configure
the controller to omit the metadata record.

Based on this simple setup, you can test your own probes easily. Please
note, currently the TestDummyWriter is still part of iObserve and will
move to Kieker in the near future.

How to use JMS Reader and Writer

This is a short introduction to the JMS reader and writer of Kieker
named AsyncJmsWriter and JmsReaderStage. The directory
examples/userguide/appendix-JMS/ contains the sources, gradle
scripts etc. used in this example. It is based on the Bookstore
application with manual instrumentation presented getting-started_.

The following sections provide step-by-step instructions for the
ActiveMQ JMS server implementation.
The general procedure for this example is the following:

	Download and prepare the respective JMS server implementation

	Copy required libraries to the example directory

	Start the JMS server

	Start the analysis instance which receives records via JMS

	Start the monitoring instance which sends records via JMS

Note

Due to a bug in some JMS servers, avoid paths including white spaces.

ActiveMQ

Download and Prepare ActiveMQ

Download an ActiveMQ archive from <http://activemq.apache.org/download.html>
and decompress it to the base directory of the example. Note, that there
are two different distributions, one for Unix/Linux/Cygwin and another
one for Windows.

Under Unix-like systems, you need to set the executable-bit of the start
script:

chmod +x bin/activemq

Also under Unix-like systems, make sure that the file bin/activemq
includes Unix line endings (e.g., using your favorite editor or the
dos2unix tool).

Copy ActiveMQ Libraries

Copy the following files from the ActiveMQ release to the
lib/ directory of this example:

	activemq-all-<version>.jar (from ActiveMQ’s base directory)

	slf4j-log4j<version>.jar (from ActiveMQ’s lib/optional directory)

	log4j-<version>.jar (from ActiveMQ’s lib/optional directory)

Kieker Monitoring Configuration for ActiveMQ

The file src-resources/META-INF/kieker.monitoring.properties-activeMQ
is already configured to use the JmsWriter via ActiveMQ.
The important properties are the definition of the provider URL and the
context factory:

kieker.monitoring.writer.jms.JmsWriter.ProviderUrl=tcp://127.0.0.1:61616/
kieker.monitoring.writer.jms.JmsWriter.ContextFactoryType=org.apache.activemq.jndi.ActiveMQInitialContextFactory

Running the Example

The execution of the example is performed by the following three steps:

	Start the JMS server (you may have to set your JAVA_HOME variable first):
- bin/activemq start Start of the JMS server under UNIX-like systems
- bin/activemq start Start of the JMS server under Windows

	Start the analysis part (in a new terminal):
- ./gradlew runAnalysisActiveMQ Start the analysis part under UNIX-like systems
- ``gradlew.bat runAnalysisActiveMQ``Start the analysis part under Windows

	Start the instrumented Bookstore (in a new terminal):
- ./gradlew runMonitoringActiveMQ Start the analysis part under UNIX-like systems
- gradlew.bat runMonitoringActiveMQ Start the analysis part under Windows

How to use AMQP Writer and Reader

This chapter gives a brief description on how to use the AmqpWriter
and AMQPReaderStage classes, which allow to use Kieker with
AMQP-based queue implementations such as RabbitMQ <http://www.rabbitmq.com>.
The directory examples/userguide/appendix-AMQP/ contains the
sources, gradle scripts and other sources used in this example. It is
based on the Bookstore application.

The following paragraphs provide step-by-step instructions for the
popular AMQP implementation RabbitMQ.

Preparation

Download and Install RabbitMQ

Download the RabbitMQ distribution from http://www.rabbitmq.com/download.html
and follow the installation instructions for your OS. Since RabbitMQ
requires Erlang, additional software packages may have to be installed
on your machine.

In order to use RabbitMQ’s integrated management UI, you may have to
enable the appropriate plugin first. This is done by issuing the
following command from the command line.

	rabbitmq−plugins enable rabbitmq management Enable the management UI under UNIX-like systems

	rabbitmq−plugins enable rabbitmq management Enable the management UI under Windows]

Once the UI is enabled, you may access it at port 15672 by default.

Configure RabbitMQ

Once the RabbitMQ server is installed and started, create a queue for
Kieker to use. This can be done easily using RabbitMQ’s management UI.
It is accessible via http://localhost:15672 (the default credentials are
guest:guest) We will assume a queue named kieker for the remainder
of this example. Please note the following caveats when configuring the
server:

	If you choose to create a transient queue, the entire queue (not just
the queued messages) is destroyed on server shutdown and must be
re-created manually.

	The RabbitMQ server’s default permissions grant access only from
localhost. If your RabbitMQ server runs on a remote machine, you
have to set the permissions accordingly.

Kieker Monitoring Configuration for RabbitMQ

The file src-resources/META-INF/kieker.monitoring.properties
is already configured to use the AmqpWriter. The important
properties are the server URI and the queue name.

kieker.monitoring.writer.amqp.AmqpWriter.uri=amqp://guest:guest@127.0.0.1
kieker.monitoring.writer.amqp.AmqpWriter.queuename=kieker

Running the Example

The execution of the example is performed by the following three steps:

	Ensure that the RabbitMQ server is started and the configured queue is accessible.

	Start the analysis part (in a new terminal):
- # ./gradlew runAnalysisAMQP Start the analysis part under UNIX-like systems
- # gradlew.bat runAnalysisAMQP Start the analysis part under Windows]

	Start the instrumented Bookstore (in a new terminal):
- # ./gradlew runMonitoringAMQP Start the analysis part under UNIX-like systems
- # gradlew.bat runMonitoringAMQP Start the analysis part under Windows

Instrumenting Software

Kieker allows to instrument various types of applications and
services utilizing different techniques to instrument and implement
probes. Yet the monitoring data produced can be analyzed by all
Kieker tools.

Kieker supports a ever growing variety of programming languages and
technologies to measure runtime information of your software systems. In
general Kieker uses probes to collect information which are then
send to a logging facility. To introduce the probes into your software
system, Kieker uses different techniques including aspect-oriented
programming. They allow the introduction of probes without changing the
source code. For rare cases, where no such technique is applicable,
Kieker can be introduced manually.

	Instrumenting Java

	Instrumenting C and other Native Programming Languages

	Instrumenting Perl

	Python Instrumentation

	Kieker4COM

	Instrumenting Visual Basic 6

	Kieker4NET

Related Topics

	Adaptive Monitoring

	Creating Probes

	Creating new Event Types

Instrumenting Java

This section comprises information on instrumenting Java application
including creating and using probes, writers, samplers and related
topics.

	Configuring Kieker

	Manual Instrumentation

	Instrumentation with AspectJ

	Servlet Instrumentation

	Instrumentation with CXF Interceptors

	Instrumentation with DiSL

	Instrumentation with AIM

	Instrumentation of Java EE Applications

	Instrumentation of Spring Applications

Configuring Kieker

	Kieker uses a configuration file kieker.monitoring.properties

	Must be placed depending on application type (see related)

	Different options to log data (refer to real info where by crosslink)

Todo

Add the following info to kieker configuration.

	CSV logging file (storage on the monitoring system)

	Binary logging file (storage on the monitoring system)

	Compressed logging file (binary and CSV, storage on the monitoring
system)

	TCP binary stream (transfer to remote host)

	Kieker binary transport protocol (two TCP connections
supporting a prioritized second channel)

	ExploreViz binary transport protocol (single TCP connection)

	Modern Kieker binary transport protocol (experimental)

	JMS object message transport (transfer to remote host)

	JMX transport via notifications (transfer to remote host)

	UNIX based named pipes (local transfer)

	Database writer (experimental)

	AMQP protocol message support (transfer to remote host)

Kieker Monitoring instances can be configured by properties files,
Configuration objects, and by passing property values as JVM
arguments. If no configuration is specified, a default configuration is
used.
The default configuration can be found here including documentation for
all properties. Additional information can be found within the
documentation of the Monitoring Controller, Monitoring Probes
and Monitoring Writers.
The default configuration properties file, which can be used as a
template for custom configurations, is provided by the
file kieker.monitoring.example.properties in the directory
examples/ directory of the binary release.

Configurations for Singleton Instances

In order to use a custom configuration file, its location needs to be
passed to the JVM using the parameter kieker.monitoring.configuration
as follows:

java -Dkieker.monitoring.configuration=<ANY-DIR>/my.kieker.monitoring.properties [...]

Alternatively, a file named kieker.monitoring.properties
can be placed in a directory called META-INF/ located in the classpath.
The available configuration properties can also be passed as JVM
arguments, e.g., -Dkieker.monitoring.enabled=true.

Configurations for Non-Singleton Instances

The class Configuration provides factory methods to create
Configuration objects according to the default configuration
or loaded from a specified properties file: createDefaultConfiguration,
createConfigurationFromFile, and createSingletonConfiguration.
Note, that JVM parameters are only evaluated when using the factory method
createSingletonConfiguration.
The returned Configuration objects can be adjusted by setting
single property values using the method setProperty.

Manual Instrumentation

Manual instrumentation is usually not the right way to instrument larger
applications. However, to inspect smaller portions of an application in
an ad-hoc manner or in cases aspect-weaving is not possible, manual
instrumentation can be a viable option.

To use Kieker with an Java application, you have to add the dependency
to your build system, e.g., (in gradle)

compile 'net.kieker-monitoring:kieker:1.14'

See also https://mvnrepository.com/artifact/net.kieker-monitoring/kieker

Instrumentation requires three key elements:
- A MonitoringController
- Data collection
- Logging of the data

Monitoring Controller

The MonitoringController provides basic facilities for monitoring
and logging, including a source for timestamps. It can be obtained in
any class by

private static final IMonitoringController MONITORING_CONTROLLER =
 MonitoringController.getInstance();

This returns a singleton instance of the monitoring controller.

Data Collection

Usually in data collection you gather all information you want to store
and put that data into an instance of an event type.

final long tin = MONITORING_CONTROLLER.getTimeSource().getTime();
final String operationName = "public void exampleOp()"
final String className = this.getClass().getName();

In this example, the first line uses the time source facility of the
MonitoringController to gain the current time. Subsequent, two
strings are defined which represent the name of the operation (method)
and the name of the class the method resides in. Finally, the data must
be packed into a event type.

final BeforeOperationEvent e =
 new BeforeOperationEvent(tin, className, operationName);

Logging of Data

The last step uses the logging facility of the MonitoringController.

Instrumentation with AspectJ

Todo

Describe general approach to do so. Refer to a tutorial for a quicker
approach.

The tutorial-servlet-example_ contains a some basic introduction to
using AspectJ probes.

AspectJ Configuration

Compile-time weaving

Load-time weaving

References

	AspectJ probes [http://api.kieker-monitoring.net/1.14/]

Servlet Instrumentation

Servlets can be instrumented utilizing javax.servlet.ServletContextListerner,
javax.servlet.http.HttpSessionListener and javax.servlet.Filter.

The first is triggered when a Servlet context is created (instantiation
of the Servlet) and destroyed. The second is triggered every time a new
session is created. And the last is invoked every time a request is sent
to the Servlet. In the following we will address all three types.

Please note that Servlets can also use other listeners which could in
principle also used to trigger monitoring. However, such probes do not
exist within Kieker, but can be build easily with Kieker
framework functionality..

Servlet Context Listener

Todo

Add how to add context listeners here (iObserve)

HTTP Session Listener

Todo

Add how to add session listeners here (Kieker, iObserve)

Servlet Filter

The Java Servlet API includes the javax.servlet.Filter and interface.
It can be used to implement interceptors for incoming HTTP requests.
Kieker uses this interface to implement different probes. To add
such interceptor to a Servlet, you have to edit the web.xml file in
your Servlet project. For example:

<filter>
 <filter−name>sessionAndTraceRegistrationFilter</filter−name>
 <filter−class>kieker.monitoring.probe.servlet.SessionAndTraceRegistrationFilter</filter−class>
 <init−param>
 <param−name>logFilterExecution</param−name>
 <param−value>true</param−value>
 </init−param>
</filter>
<filter−mapping>
 <filter−name>sessionAndTraceRegistrationFilter</filter−name>
 <url−pattern>/∗</url−pattern>
</filter−mapping>

This configuration adds the
kieker.monitoring.probe.servlet.SessionAndTraceRegistrationFilter
interceptor to the Servlet configuration and identifies it with
sessionAndTraceRegistrationFilter. It sets one parameter
logFilterExecution to true. In the filter mapping, the
sessionAndTraceRegistrationFilter is mapped to all URLs, i.e., to
all Servlet in the project.

Related Information

Kieker comes with many different Servlet filters.

Todo

Add list to filters and listeners here

Instrumentation with CXF Interceptors

Instrumentation with DiSL

https://gitlab.ow2.org/disl/disl

Instrumentation with AIM

Todo

WE need to add documentation here.

Instrumentation of Java EE Applications

Instrumentation of Spring Applications

Instrumenting C and other Native Programming Languages

We provide experimental C language support for Kieker.

Creating your own Event Types

Instrumentation

	Include instrumentation with gcc feature

	Using AspectC++ for instrumentation

Instrumenting Perl

Perl (experimental, http://eprints.uni-kiel.de/21141/7/vortrag.pdf)

	Sub::WrapPackages based AOP

	Manual instrumentation

Note

The code generator for Kieker records can produce record types for
Perl.

Python Instrumentation

Note

This is an upcoming effort. Currently, we are selecting a model to
create fast and sufficient record types in python.

Kieker4COM

Kieker4COM is a Kieker adapter supporting monitoring of programming
languages based on Microsoft’s Component Object Model
(COM) [https://en.wikipedia.org/wiki/Component_Object_Model]. The
adapter has been developed as a part of the
DynaMod [http://kosse-sh.de/dynamod] research project. It has been
tested particularly with Visual Basic 6.

	Downloading, Installing, Using Kieker4COM

	Downloading Kieker4COM

	Installing Kieker4COM

	Testing the Kieker4COM installation

	Uninstalling Kieker4COM

	Kieker4COM Aspects

Downloading, Installing, Using Kieker4COM

Downloading Kieker4COM

	Kieker4COM install archives are provided by the nightly
build [http://kieker.uni-kiel.de/jenkins/job/kieker4com-nightly-release/lastSuccessfulBuild/artifact/dist/release/]

	The sources are available via the Git repository
kieker4com [https://build.se.informatik.uni-kiel.de/kieker/4com]

Installing Kieker4COM

Note: If you have just uninstalled a Kieker4COM version, you should
perform a restart before starting a new installation process!

1. Start installer

Double-click on the downloaded file to start the installer.

You may need to allow the execution of the Java Virtual
Machine [http://en.wikipedia.org/wiki/Java_Virtual_Machine] required
for the installation program.

2. Language Selection

In the following dialog, you can select the language used in the
installation wizard. Currently, German and English are supported.

[image: ../../_images/01-lang.png]

3. Installation Directory

The next step of the installation wizard lets you select the Kieker4COM
installation directory. Currently, our recommendation is to keep the
default value. In the following step, this step of creating the
installation directory requires an additional confirmation.

[image: ../../_images/02-installdir.png]
[image: ../../_images/03-confirm-installdir.png]

4. Installation of Kieker4COM Binaries

After having confirmed the installation in the previous step, the
installer copies the Kieker4COM binaries to the selected directory.

[image: ../../_images/04-copy-done.png]

5. Selection of J-Integra COM License File

Kieker4COM employs the ` J-Integra
COM <http://j-integra.intrinsyc.com/com.asp>`__ bridge for accessing the
Java-based Kieker monitoring component. The use of J-Integra COM
requires the installation of a ` JI COM Client
license <http://j-integra.intrinsyc.com/pricing.asp>`__.

Please select the file system location of the J-Integra COM license file
and confirm your selection.

[image: ../../_images/05-select-license.png]

6. Registration of Kieker4COM and Completion of Installation

The next installation steps include the registration of the Kieker4COM
service in the Windows registry, the activation of the J-Integra COM
installation included with Kieker4COM, as well as an initial start of
the Kieker4COM service.

[image: ../../_images/06-confirm-registry.png]
[image: ../../_images/07-registry-confirmed.png]
[image: ../../_images/08-dll-success.png]
[image: ../../_images/09-success.png]

Testing the Kieker4COM installation

The Kieker installation directory (%KIEKER_HOME%) contains a folder
called examples, which includes example projects instrumented in
different programming langugages. The directory examplesvb6\ includes
examples for Visual Basic 6:

	bookstore-annotated. A sample application which is enriched by
AspectVB6 monitoring annotations which can be processed by the
` AspectLegacy <http://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/>`__
tool in order to weave Kieker4COM monitoring
aspects [http://kieker.uni-kiel.de/trac/wiki/Kieker4COM/Aspects]
into the VB6 source code. See the Wiki page
KiekerCOM/Aspects [http://kieker.uni-kiel.de/trac/wiki/Kieker4COM/Aspects]
for details.

	bookstore-woven. This project is the result of the afore-mentioned
process of weaving Kieker4COM monitoring
aspects [http://kieker.uni-kiel.de/trac/wiki/Kieker4COM/Aspects]
into the source code of the bookstore-annotated project. We will use
this project to test the Kieker4COM installation.

The following figure shows the directory contents:

[image: ../../_images/50-bookstore-woven-project.png]
UPDATE: In newer versions, the example directory includes a
pre-compiled Bookstore.exe which can be started directly without the
need to import the VB6 project.

Import the project into the Visual Basic 6 IDE by opening the project
file Bookstore.vbp. Having started the example, the following debug
messages should appear in the Immediate Window (Ctrl+G):

[image: ../../_images/51-immediate-window.png]
The Kieker monitoring log is written to a directory named like
kieker-<timestamp> located in the %TEMP% directory (e.g.,
C:UsersvoornAppDataLocalTemp).

[image: ../../_images/52-log-dir.png]
This Kieker file system monitoring log can now be processed by the
Kieker.TraceAnalysis tool, just like monitoring logs from Java or .NET
systems. An example monitoring log is contained in the
examplesvb6monitoring-logsdirectory.

A KiekerCOM.log file with log messages is written to the %USERPROFILE%
directory.

[image: ../../_images/53-log4log.png]
The following diagrams were created by the following calls to the
Kieker.TraceAnalysis tool:

C:Program Fileskieker4COMbin>trace-analysis.bat -i
..examplesvb6monitoring-logskieker-20111017-152928614-UTC-voorn-PC-KIEKER
-o %TEMP% -p bla –plot-Assembly-Component-Dependency-Graph
–plot-Assembly-Component-Dependency-Graph

[image: ../../_images/com-assemblyComponentDependencyGraph.png]
[image: ../../_images/com-assemblySequenceDiagram-2.png]
Log messages are written to a kieker.log file in the %USERPROFILE%
directory.

Please refer to the ` Kieker
documentation <https://se.informatik.uni-kiel.de/kieker/documentation/>`__—particularly
the User Guide—to learn more about the usage of the
Kieker.TraceAnalysis tool.

Uninstalling Kieker4COM

1. Start Uninstaller

Double-click on the uninstaller.jar file, to be found in the
Uninstaller sub-directory.

You may need to allow the execution of the ` Java Virtual
Machine <http://en.wikipedia.org/wiki/Java_Virtual_Machine>`__ required
for the uninstaller.

[image: ../../_images/90-start-uninstaller.png]

2. Confirm Uninstallation

In the upcoming wizard you should select the deletion of all files
included in the Kieker4COM installation directory and start the
uninstall process.

The uninstaller reports the successful deregistration of the Kieker4COM
service and the successfull completion of the uninstallation process.

[image: ../../_images/92-confirm-uninstall.png]
[image: ../../_images/94-uninstall-complete.png]

3. Manual Deletion of the Kieker4COM Installation Directory

The uninstaller already removed most of the sub-directories and files
included in the Kieker4COM installation directory. As a last step,
you’ll need to manually remove the kieker4COM directory from your
%ProgramFiles% (e.g., C:Programmekieker4COM) directory.

In some cases, the file Kieker4COM cannot be removed because it used.
Please perform a restart an repeat this manual deletion step.

Important note for Subsequent Reinstallation

You should restart your system after an uninstallation before starting
a subsequent installation.

Kieker4COM Aspects

Please see Getting Started
to learn how to install and use Kieker4COM. The pathes mentioned in this
document refer to the installation directory.

Kieker4COM VB6 Aspects Project

The Kieker4COM aspects project directory for VB6 can be found in the
directory Kieker4COMaspectsvb6. The VB6 project file, which can be
imported into the Visual Basic 6 IDE and can be used with
Aspect VB6 [http://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/],
is Kieker4COMaspectsvb6Aspects.vbp.

Todo

The tools site has moved. Please fix it.

Currently, the project includes two aspects for monitoring executions
(OpExecIcptr) and calls (OpCallIcptr) of VB6 routines, i.e., Procedures,
Functions, and Properties:

	OpExecIcptr.cls

	OpCallIcptr.cls

Using the Kieker4COM Aspects

The directory Kieker4COMexamplesvb6bookstore-annotated contains a VB6
version of the Bookstore application, including annotations for the
Kieker4COM aspects. These annotations can be processed by
Aspect VB6 [http://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/].

Todo

The tools site has moved. Please fix it.

Adding Annotations to VB6 Source Code

The examples were taken from the KiekerCOM example project
Kieker4COMexamplesvb6bookstore-annotated.

OpExecIcptr

'@intercept#Execution:OpExecIcptr["Bookstore","Class_Initialize"]

Private Sub Class_Initialize()

Set oCatalog = New catalog

...

OpCallIcptr

Public Sub searchBook()

'@intercept#Call:OpCallIcptr["Bookstore", "searchBook", "Catalog", "getBook"]

catalog.getBook (False)

'@intercept#Call:OpCallIcptr["Bookstore", "searchBook", "CRM", "getOffers"]

crm().getOffers

End Sub

Using AspectVB6 for Weaving the Monitoring Code

Using the command-line

/path/to/avb6c.sh \
 -s bookstore-annotated/Bookstore.vbp \
 -a ../../src/aspectvb6/Aspects.vbp -o bookstore-woven/

Using the GUI

[image: ../../_images/aspect-compiler-configuration.png]

Instrumenting Visual Basic 6

	AspectLegacy Quick Start (Visual Basic 6)
	Table of Contents
	Introduction to the “Bookstore” Example

	Installation

	Weaving the “Bookstore” Example

	Enhanced parameters

	AspectLegacy (Visual Basic 6) User Guide
	Usage
	Configuration management

	Command-line or GUI-based

	Options
	Line-break type

	File encoding

	Exclude patterns for files (filename filter)

	Verification options

	Weaver options

	Logging options

	The Graphical User Interface (GUI)
	Limitations / Future Work
	Text-based weaving

	AST-based weaving (futural feature)
	Text-based weaving vs. AST-based weaving

	AspectLegacy (Visual Basic 6) Developer Guide
	Layered Architecture
	Components of the core layer

	Language-dependent enhancements through the upper layer

Note

This is legacy documentation. There might be discrepancies between
the documentation and the current version of the external software
used when developing this Kieker extension.

AspectLegacy Quick Start (Visual Basic 6)

Table of Contents

	AspectLegacy Quick Start (Visual Basic
6) [https://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/wiki/dynamod.aspectlegacy/QuickStartVB6#AspectLegacyQuickStartVisualBasic6]

	Introduction to the “Bookstore”
Example [https://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/wiki/dynamod.aspectlegacy/QuickStartVB6#IntroductiontotheBookstoreExample]

	Installation [https://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/wiki/dynamod.aspectlegacy/QuickStartVB6#Installation]

	Weaving the “Bookstore”
Example [https://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/wiki/dynamod.aspectlegacy/QuickStartVB6#WeavingtheBookstoreExample]

	Enhanced
parameters [https://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/wiki/dynamod.aspectlegacy/QuickStartVB6#Enhancedparameters]

This section describes the steps to be done for installing the
AspectLegacy tool. Note that the tool works under Linux as well as under
Windows XP/Vista/7, but for compiling any (woven) Visual Basic 6 source
code projects (.vbp), an installed version of the Visual Basic 6
integrated development environment (VB6 IDE) from Microsoft is required;
since the IDE is only available for Windows machines, VB6 code cannot be
compiled (but woven) under Linux.

Introduction to the “Bookstore” Example

The AspectLegacy distribution contains a simple “bookstore” example
code, written in Visual Basic 6 and divided into a main- and an
aspects-project. Depending on this example, the section below describes
how VB6 source files can be woven using the AspectLegacy tool, and how
the woven code can be compiled afterwards. The source code of the
bookstore main project contains several annotations referring to the
classes of the aspects projects. They will take effect after weaving, by
showing up dialogue windows whenever any of the annotated code positions
are being entered while runtime.

Installation

It is assumed that you have already installed a VB6 IDE under Windows.

	At first, you have to download the AspectLegacy binary distribution
archive (“dynamod.aspectlegacy-1.0_binaries”), which is available
here [http://sourceforge.net/projects/dynamod/files/dynamod.aspectlegacy/1.0/]
as a .zip- as well as a .tar.gz-file.

	Extract the downloaded archive to an arbitrary location; the content
will be placed into a (sub-)directory “dynamod.aspectlegacy-1.0”
containing the following elements:

[image: ../../_images/structure_archive.png]
The content of the sub-folders is as follows:

	Folder

	Content

	bin

	Binary files (script files)

	dist

	Distribution files, contains the installer for the weaver.

	examples

	Examples for Cobol (futural feature) and Visual Basic 6.

	lib

	Required libraries.

	Start the installer by double-clicking the
“dynamod.aspectlegacy-1.0-installer-WIN32.jar” file, which is located
in the “dist”-directory.

	Select the language to be used for the installation process:

[image: ../../_images/inst_language.png]
Note that the language only affects the installation process, not the
aspect legacy application itself, which is always in english.

	Afterwards, you will be asked for the target location of the
application files:

[image: ../../_images/inst_target.png]
The default directory is “C:Program FilesAspectLegacy”, which should
be preferably chosen. In case the target directory does not exist, its
creation has to be confirmed:

[image: ../../_images/inst_createdir.png]

	After the target directory has been confirmed, the installation
process will start:

[image: ../../_images/inst_process.png]
After the installation process finishes successfully, the “Next”-button
will be enabled:

[image: ../../_images/inst_finished.png]

	Click the “Next” button to start the registration process. In this
step, a key will be added to the registry, hence you are asked to
confirm the modification:

[image: ../../_images/inst_register1_reg_confirm.png]
Click the “Yes”-button for allowing the installer to add the necessary
key to the registry.

	Finally, reboot your system to make the changes take effect (you
might click the “Quit”-Button of the installer optionally before).

	After your system has been rebooted, the “program files” folder
contains a new sub-directory with the following structure, looking
similar to the one of the distribution archive:

[image: ../../_images/structure_application.png]

	In the “bin” directory, you will find several batch-files,
respectively the script files for starting the weaver application.

Weaving the “Bookstore” Example

It is assumed that you have already performed the steps described in the
Installation [https://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/wiki/dynamod.aspectlegacy/QuickStartVB6#Installation]
section, so that an installed version of the AspectLegacy exists.

The following steps are required for starting the AspectLegacy
application:

	Go to the “bin” directory which contains several batch-files (.bat),
respectively those for starting the application. You might go there
by using a command-line shell or a file manager, for example “Windows
Explorer”.

	Do not execute the “avb6c.bat” file directly, since this is only the
core file of all other batch-files contained in the “bin” directory;
instead, you might execute one of the following batch-files:

	The command

avb6c-cmdl.bat

simply starts the application in a command-line shell. It prints a
usage-overview of the available parameters to standard output, if no
additional parameters are being passed.

	The command

avb6c-cmdl.bat -g

starts the application with its GUI. The GUI will be initialized with
default properties. The input-projects and the output-directory have to
be defined using the file dialogues of the GUI, and the weaving process
can be started by clicking the “Start”-button of the GUI (note that the
input projects and an output directory have to be defined therefore).
The command

avb6c-gui.bat

has been added for convenience reasons and is equivalent to this.

Now, we are going to weave the Visual Basic 6 projects of the
“Bookstore” example:

	Go to the “examples” directory which contains the batch-files
“avb6c-cmdl-example.bat” and “avb6c-gui-example”. Again, you might go
there by using a command-line shell or a file manager. The
sub-folders

examplesvb6bookstore-vb6-annotated\

and

examplesvb6bookstore-vb6-aspects\

contain the annotated and aspects-projects which we are going to weave
by example. Furthermore, the sub-folder

examplesvb6bookstore-vb6-weaving-result\

contains the result project as it is expected to look like after
weaving.

	Execute one of the available “.bat”-files:

	The command

avb6c-cmdl-example.bat

starts the weaving process immediately (without GUI) for the example
projects and writes the weaving result to the “Temp” folder of the local
user directory. Any log-messages will be displayed as command-line
output. The output files will be located in the sub-folder

Tempbookstore-vb6-weaving-result\

of your user directory. Consequently, the full path of the result
project will be (in Windows) similar to

C:UsersyournameAppDataLocalTempbookstore-vb6-weaving-resultBookstore.vbp

	The command

avb6c-gui-example.bat

starts the GUI with the example projects as default input projects and a
default output directory. The weaving process can be started immediately
by clicking the “Start”-button of the GUI, and any log-messages will be
displayed in the GUI-specific logging window.

Enhanced parameters

This section contains an overview of additional parameters to be
optionally used.

	The command

avb6c-cmdl.bat -g gui.properties

starts the GUI of the weaver with the (optionally) given configuration
properties; this is for future purposes only.

	The command

avb6c-cmdl.bat -g gui.properties -w weaver.properties -l
logging.properties

starts the GUI of the weaver as well as the command above, with
individual properties for weaving and logging; these properties might be
even passed, if no GUI is used.

AspectLegacy (Visual Basic 6) User Guide

Created by Andre van Hoorn, last modified on Oct 03, 2016

Usage

Configuration management

For simplifying the (re-)configuration of the weaver, its properties are
stored in a certain .properties-file for each component. The following
components are supported:

	The graphical user interface (GUI),

	The logging unit,

	The weaver itself.

The properties of each component are hierarchically composed; whenever
the value of any property is requested, the properties-sources will be
searched in the following order:

	User-defined properties file at a file system location (passed as a
parameter to the weaver, see section Command-line or
GUI-based [https://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/wiki/dynamod.aspectlegacy/UserGuide#Command-lineorGUI-based]);
the file might contain any re-definitions of the available properties
of sources 2.) or 3.).

	User-defined properties file (with a predefined name), located in the
working directory of the weaver; the file might contain any
re-definitions of the available default properties of source 3.). The
required names of the properties files to be located in the working
directory are as follows:

	dynamod.aspectlegacy.gui.properties

	(default) GUI properties, for futural usage only.

	dynamod.aspectlegacy.logging.properties

	(default) logging properties for selection of the messages to be logged.

	dynamod.aspectlegacy.weaver.properties

	(default) weaver properties for specification of general flags, selections etc.

Each of those files contains a set of key/value pairs, as they are
used in Java resource bundles. A complete overview of the available
properties is given by the files themselves, since all properties
have been commented completely there (just have a look).

	Default properties always present in the weaver.

Command-line or GUI-based

The weaver can be used as a command-line tool, or it can be started with
a graphical user interface (GUI) alternatively.

Starting the weaver from command-line is recommended, if only default
configuration properties shall be used. The weaving process itself will
be much faster, as there is no synchronization with the GUI -
particularly with the log-display - necessary. On the other hand, the
specification of input values to be passed as command-line parameters,
e.g. definition of input projects as well as the output directory, might
be prone to typos.

The GUI is useful for adjusting the default configuration to certain
cases. It provides an output window for log-messages and offers a much
more comfortable way of weaver configuration, for example, searching for
input/output paths via file dialogues or setting flags easily by
clicking their corresponding checkboxes. Furthermore, the GUI provides
an additional cleanup button for removing all lately generated output
files.

In both cases, the execution of the weaver requires the declaration of
certain parameters. Some of them are necessary, and some of them are
optional. The following parameters are available (denoted in short, long
format):

	-s,–source-project

	Path to the source project to be woven (required, if GUI is disabled).

	-a,–aspects-project

	Path to the aspects project (required, if GUI is disabled).

	-o,–output-dir

	Path to the output directory for the woven project (required, if GUI is disabled).

	-g,–gui

	(Optional) usage of the graphical user interface (GUI); as an optional parameter, a properties-file might be passed for individual GUI-configuration.

	-w,–weaver

	(Optional) properties file for weaver configuration.

	-l,–logging

	(Optional) properties file for logging configuration.

The paths can either be relative to the current weaver location or
absolute. The paths of the input projects might denote directories or
project-files, depending on the selected language.

Options

Line-break type

The line-break type determines the newline-format of the woven source
code. Since different operating systems have different character codes
that represent a newline, is might be useful (and in many cases
necessary) to select the newline format of the weaver output code
explicitly. Four types are available:

	Windows (“rn”)

	Unix (“n”)

	Mac (“r”)

	Current OS

File encoding

The encoding-option provides the selection of the encoding which is used
for the source codes of a project to be woven. This might be necessary
for compiling the woven sources afterwards, since some compilers demand
a certain ISO-encoding of source code. For example, The Visual Basic 6
IDE gives error messages, in case the code to be compiled is not
ISO8859-1-encoded (Windows); if the weaver is started under Linux
(UTF-8), you will need to choose explicitly the correct encoding in that
case.

Exclude patterns for files (filename filter)

If the source- and aspects-projects both contain any files of same names
(in the same relative sub-directory), a file conflict occurs. In those
cases, the weaving process will stop with a conflict message, as the
weaver does not know which file to take for the result output.

The filename filter supports exclude patterns for files of certain names
to avoid any of those conflicts. The patterns must be passed as a list
to the filter. Furthermore, the filter supports simple wildcards to
exclude all files with matching names from the weaving process.

The following Wildcards are available:

“?” indicates an arbitrary, single character.

“*” indicates a sequence of arbitrary characters.

Example: The line

“*.scc”; “textfile.txt”; “Image??.JPG”; “./parent/child”

indicates the exclusion of all files ending with “.scc” from the weaving
process, as well as files of name “textfile.txt” and files named
“Image??.JPG”, with arbitrary characters at the question mark positions.
Furthermore, the file “child” contained in the sub-directory “parent”
will be excluded.

Wildcards are allowed in single file-/directory-names, but not in full
file-paths (yet?). The wildcards can be combined in an arbitrary way,
for example:

image?*.jpg

sorts out all .jpg-images with at least one character behind the “image”
token in their name, followed by an optional sequence of further
characters.

Verification options

The following verification tests might be optionally done within the
weaving process:

	Project directories are not allowed to be the same:

If enabled, the weaver will test on start whether the project
directories do not denote the same file system location. This test
should be always enabled, since the source- and aspects-projects
generally have to be located in different directories.

	Files must be located in their base directories:

If enabled, the weaver will stop its work whenever a file to be accessed
is located neither in the source-project directory nor in the directory
of the aspects-project. This option is for futural purposes only.

	Files of the same name are not allowed to be in both directories:

If enabled, the weaver ensures that the files to be woven or copied from
the source- and aspects-projects differ from each other regarding their
name. This test will be done for each file if and only if the file has
not been filtered out (see section Exclude patterns for files (filename
filter) [https://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/wiki/dynamod.aspectlegacy/UserGuide#Excludepatternsforfilesfilenamefilter]).

	References have to be valid:

If enabled, the weaver will finally test whether all files of the
aspects-project, referenced by any annotations, have been successfully
copied to output directory.

Additional language-dependent tests might be necessary, for example, the
requirement of Visual Basic 6 project-files ending with “.vbp”; those
tests have to be done in the upper, language-dependent layer (see
section Layered
architecture [https://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/wiki/dynamod.aspectlegacy/DeveloperGuide#Layeredarchitecture]
of the Developer
Guide [https://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/wiki/dynamod.aspectlegacy/DeveloperGuide]).

Weaver options

The following weaver options are available:

	Overwrite output files:

If enabled, existing files located in the output directory will be
overwritten with files of same name. If disabled, the weaver will stop
its work in case a conflict with an existing file occurs.

	Add info-marks:

If enabled, informational comments will be inserted above each
transformed code-block.

	Copy all directories:

If enabled, (possibly existing) empty directories will be copied from
the source projects to the output directory. If disabled, empty
directories will be ignored.

	Accept hidden files:

If enabled, hidden files will be included to the weaving process.

	Clean-up on error:

If enabled, all created files will be deleted immediately after weaving
has failed. If disabled, the created (but possibly incomplete or
corrupt) files will be left in the output directory.

	Compile after weaving:

If enabled, the result source codes written to the output directory will
be compiled immediately after weaving; external compilers or IDEs might
be required for this step.

Logging options

The following logging options are available:

	Log compiler messages:

Enables the logging of informations submitted by the compiler unit,
whenever the resulting source code is going to be compiled.

	Log weaver file-access messages:

Enables the logging of informations submitted by the weaver, whenever it
is going to copy or modify a file.

	Log verification messages:

Enables the logging of informations submitted by the verification unit,
whenever a verification test is going to be done.

	Log code-transformation messages:

Enables the logging of informations submitted by the code-transformation
unit, whenever an annotation is going to be transformed, variables are
going to be inserted etc.

	Log clean-up messages:

Enables the logging of informations submitted by the clean-up unit,
whenever a file or directory is going to be deleted, or even if one
cannot be deleted.

The Graphical User Interface (GUI)

When the weaver application is started with the “-g” parameter (see the
Quickstart for Visual Basic
6 [https://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/wiki/dynamod.aspectlegacy/QuickStartVB6]),
the following configuration window will be displayed:

[image: ../../_images/weaver-gui.png]
The initial settings will be in accordance with the configuration
properties, as they are defined by default or transmitted by the user
(see section Configuration
management [https://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/wiki/dynamod.aspectlegacy/UserGuide#Configurationmanagement]).

The GUI has a “top-down” design. That is, the base settings (considered
language, text- or AST-based weaving type, location of project files in
the file system) have to be configured in the upper part of the GUI,
before the possibly language- and weaving type-specific weaver-,
verification- and logging-options should be set, as well as further
options in the middle part. Below the options part, a control panel
contains buttons for starting and stopping the weaving process, as well
as cleaning up files or exiting the application. Finally, the bottom
part of the GUI contains a log-window for showing all information
generated by the weaver.

The base settings need to be initialized with values for the following:

	Language (to be considered for weaving, e.g. Visual Basic 6, COBOL,
…)

	Weaving type (text- or AST-based)

	Projects (respectively their locations in the file system)

For setting the language, a combo-box is provided, which contains all
languages supported by the weaver:

[image: ../../_images/aspect-compiler-language.png]
There must be at least one supported language available; if no further
languages are supported, the combo-box is disabled, and the only
supported language will be selected automatically.

The weaving-type must be selected by clicking the related radio button;
currently, only text-based weaving is available, so this is for futural
usage only:

[image: ../../_images/aspect-compiler-weaving-type.png]
For defining the locations of the projects within the file system, the
GUI provides file-choosers, which will be shown whenever one of the
“Select”-buttons is being clicked:

[image: ../../_images/aspect-compiler-projects.png]
Some language like Visual Basic 6 need project-files, other languages do
not. It depends on the selected language whether a project-file or a
project directory must be determined.

The options need to be initialized with values for the following:

	Weaver options

	Verification Options

	Logging options

Since all of these option values are boolean, the related part of the
GUI contains a tabbed overview, with a tab for each option group,
supporting check-boxes for setting the values easily:

[image: ../../_images/aspect-compiler-options.png]
Furthermore, the options panel provides input masks for the encoding
type as well as for the line-break type to be used:

[image: ../../_images/aspect-compiler-encoding-type.png]
[image: ../../_images/aspect-compiler-line-break.png]
Finally, an input field for exclude file patterns is included (see
section Exclude patterns for files (filename
filter) [https://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/wiki/dynamod.aspectlegacy/UserGuide#Excludepatternsforfilesfilenamefilter]):

[image: ../../_images/aspect-compiler-exclude-files.png]
The control panel holds the control for all processes to be started or
stopped:

[image: ../../_images/aspect-compiler-start.png]
The following options are available:

	Start

	
	Start the weaving process.

	Cleanup files

	
	Delete all newly created files/directories of the latest weaving-process; this will not delete any files/directories, which existed already before.

	Clear log

	
	Clear the logging display (see section Logging window).

	Exit

	
	Quit application.

The logging window displays the information generated by any running
task of the weaver:

[image: ../../_images/aspect-compiler-logging.png]
The content will be displayed multi-coloured, whereas the colours are
assigned as follows:

	Black

	
	General informations (e.g. confirmation message for a finished process).

	Light red

	
	Fatal errors (whenever an exception makes the weaver stopping an operation).

Optional log-messages (see section Logging
options [https://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/wiki/dynamod.aspectlegacy/UserGuide#Loggingoptions]):

	Dark red

	
	Clean-up messages.

	Green

	
	Compiler messages.

	Purple

	
	Verification messages.

	Dark blue

	
	Code-transformation messages.

	Light blue

	
	Weaver file-access messages.

Limitations / Future Work

As a futural feature, weaving might be done text-based or AST-based (see
section Weaving
type [https://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/wiki/dynamod.aspectlegacy/UserGuide#Weavingtype])).
The following section describes the main differences between both types.

Text-based weaving

In the text-based weaving mode, the weaver will scan the source code
line-by-line and generate the transformed code “on the fly”, without
syntax parsing. Syntax analysis is restricted to single lines, as they
are read while weaving.

AST-based weaving (futural feature)

In case AST-based weaving is selected, the source code of the input
projects will be parsed for generation of an abstract syntax tree. This
enables the detection of multiple-rows-comments and consequently the
detection of line-breaks, GOTOs etc.

Text-based weaving vs. AST-based weaving

Text-based weaving is strongly restricted, since the source code is
considered only as plain text. There is no extensive analysis of
syntax/semantics, hence even the partial analysis of the source code is
difficult or not possible. For example, in languages like C/C++ or Java,
where comments might be nested or be wrapped over several lines, no
certain conclusion can be drawn about a single text line (e.g. whether a
certain line belongs to a wrapping comment, even if the statement itself
seems to be a command).

Consequently, text-based weaving should be primarily used for “simple”
languages, particularly for those which allow exclusively
single-line-comments (e.g. COBOL).

AST-based weaving should be used to ensure that the source code is
parsed correctly, for the ability to detect “complex” syntactical
constructs split on multiple lines (comments, split commands etc.).

AspectLegacy (Visual Basic 6) Developer Guide

Layered Architecture

For adapting the weaver framework to any additional programming
language, its architecture consists of a generic core component, which
serves as a base unit for any language-specific weaver adaption.
Consequently, the architecture of the weaver algorithm can be
illustrated as a two-layers model, consisting of a constitutive,
language-independent layer (core) and an adapting language-dependent
layer for any related programming language:

[image: ../../_images/weaver-layers.png]
The lower layer (which can be considered a single core-component, since
it is implemented as an own Java package) provides the generic
functionality, e.g. file access, search for annotations within code,
verification and logging. The upper, language-dependent layer provides
the language-dependent functionality.

Additionally, an optional Graphical User Interface (GUI) is provided for
simplifying the weaver configuration process. The GUI can be seen as a
third layer, covering all language-dependent implementations, since it
provides the configuration functionality for all currently supported
languages:

[image: ../../_images/weaver-layers-gui.png]

Components of the core layer

Since the core layer (= Java package) provides the generic functionality
of the weaver, it includes particularly the search-and-insert-algorithm
for text-based weaving and generic support for code compilation.
Consequently, it consists of two sub-components, one for the weaving
process itself and another sub-component for (optionally) compiling the
result code afterwards; each of those components denotes an own Java
sub-package of dynamod.aspectlegacy.core:

	Code weaving unit (package dynamod.aspectlegacy.core.weaver)

	Code compilation unit (package dynamod.aspectlegacy.core.compiler)

The weaving unit provides the generic weaving functionality, which is
copying or reading files, searching annotations within source code,
substituting annotations with their indicated code, writing output
files, verification, logging and possible clean-up of files. It includes
four sub-components, each one denoting an own Java sub-package of
dynamod.aspectlegacy.core.weaver:

	Clean-up unit (package dynamod.aspectlegacy.core.weaver.cleanup)

	File access unit (package
dynamod.aspectlegacy.core.weaver.fileaccess)

	Code transformation unit (package
dynamod.aspectlegacy.core.weaver.transformation)

	Verification unit (package
dynamod.aspectlegacy.core.weaver.verification)

The tasks within the weaving process are assigned to the units as
follows:

	The clean-up functionality includes the (optional) deletion of any
files and directories which have been created while weaving.

	The file access unit provides all input-/output-operations, where
files might even denote directories. File access includes the reading
of directory content, copying files, reading (text-)file content etc.

	Code transformation is the search for annotations in a given source
code and substitution of those with the code they indicate.

	Verification is done for checking possible violations of any
contrains. This includes, for example, the requirement of having
different directories for the source- and aspects-projects, or even
the existence of certain output files.

The package for code compilation contains a facade class, which
summarizes all compiler options. Since the compiler unit makes use of
the weaver unit, it additionally delegates certain method calls to the
facade provided by the weaver package.

https://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/attachment/wiki/dynamod.aspectlegacy/DeveloperGuide/weaver_core_packages.png

Code compilation will be usually done by invoking an external compiler
or IDE. Therefore, the configuration files of the weaver might be
adjusted (see section Configuration
management [https://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/wiki/dynamod.aspectlegacy/UserGuide#Configurationmanagement]
of the User
Guide [https://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/wiki/dynamod.aspectlegacy/UserGuide]).

Language-dependent enhancements through the upper layer

Adapting the core package to any certain programming language requires
some work, but the aim of this framework is to keep the implementation
effort restricted to just a few classes.

Several core components contain interfaces and abstract classes with
abstract methods to be implemented. Most of these methods provide simple
functionality, for example, detection of comment-indicators and removing
them from code lines; the latter being necessary for dealing with
annotations as single-line-comments. The abstract methods have to be
implemented by the upper-layer classes of the weaver model, since those
classes provide the language-dependent functionality of the weaver.
Additionally, certain core-interfaces define the methods which will be
invoked by the code transformation unit, whenever an annotation is to be
transformed. These interfaces must be implemented, too, since the code
constructs to be inserted in place of the annotations depend on the
considered language. The implementation of the transformation part takes
some effort, but afterwards the weaver is nearly complete. Finally, the
set of files to be included into the weaving process must be determined.

For each programming language to which the core package shall be
adapted, the following steps must be done:

	The (abstract) class AbstractCodeLine.java represents a single,
generic code line. It contains abstract methods for checking whether
a given String is a comment, for removing a comment-indicator from a
given comment-String and for cloning a code line itself. Note that
only single-line-comments are supported in text-based weaving, which
includes for example lines with leading “//” in Java, “REM” or “’” in
Visual Basic 6, or “*” in Cobol (see section Limitations/Future
Work [https://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/wiki/dynamod.aspectlegacy/UserGuide#LimitationsFutureWork]
of the User
Guide [https://build.se.informatik.uni-kiel.de/DynaMod-tools/trac/wiki/dynamod.aspectlegacy/UserGuide]).
For making this class language-dependent, the methods mentioned above
must be implemented by a sub-class, related to the considered
language. A good way for implementing the required functionality of
these classes is the use of regular expressions.

	Interface ICodeLineFactory.java serves, as its name indicates, as a
factory for code lines. It provides methods for creating instances of
concrete AbstractCodeLine-subclasses, implemented in step 1. The
implementation of the factory-methods is mostly trivial (just return
new instances of code lines).

	Interface IAnnotationTransformer.java is the base interface for any
code transformation indicated by an annotation. Each annotation type
(e.g. “CALL”, “EXECUTION”) requires a type-related annotation
transformer to be implemented, since each type indicates a different
kind of code transformation. Any implementation of this interface
needs some more comprehensive effort, as the code transformation
includes the substitution of annotations with their indicated,
language-dependent code.

The interface contains the transform()-method, which will be invoked
by the code transformer, whenever it finds a new annotation to be
transformed. Hence, the transformer passes amongst other parameter
values the annotation itself, the index of the first line to be
transformed within the original code (which is usually the line just
after the related annotation). Furthermore, it provides the original
code as well as the transformed code (as it is in the current state).
The remaining parameters of this function are only relevant for
recursive function-calls.

The transform()-method must analyse the given annotation and add the
indicated code to the end of the currently transformed code (note
that the text-based transformation is done top-down, so additional
transformed code will just be appended to the currently existing list
of transformed lines); the original code must be left unmodified.
Finally, the function has to return the index of the next line within
the original code content to be examined.

	While weaving, a certain set of files must be read and written.
Therefore, the package dynamod.aspectlegacy.core.weaver contains the
(abstract) class AbstractFileCollector.java, which defines four
abstract functions to be implemented for defining the considered set
of files:

	getWeavableMainProjectFiles()

	getMainProjectFilesToBeCopied()

	getWeavableAspectProjectFiles()

	getAspectProjectFilesToBeCopied()

The getWeavableFiles()-methods must return the lists of source-files
contained in the main/aspects projects, and the
getProjectFilesToBeCopied()-methods have to return the “non-weavable”
files, like images, audio-files etc.; the sets of files returned by
these methods must be disjunct, and their union must include all
required files for generating the output project.

The class FileCollectorAdapter.java of the package
dynamod.aspectlegacy.core.weaver provides methods for collecting the
required files by their file endings from certain directories.

Besides the transformation of annotations, additional
(language-dependent) transformation might be necessary, depending on the
chosen language (e.g. insertion of new, global variables). Therefore,
the visibility of certain methods in class CodeTransformer.java of the
core.transformation package is “protected”, so that these methods can be
accessed by any sub-class (see comments within the source code).

Once you have done the steps above, the abstract classes

	dynamod.aspectlegacy.core.weaver.AbstractAspectWeaverCreator.java and

	dynamod.aspectlegacy.core.compiler.AbstractCompiler.java

have to be implemented. The implementation of the abstract methods
within these classes is mostly trivial (just return new instances of the
classes you have implemented by doing the steps above). Additional
functionality might require the overwriting of certain methods within
these classes, but this is case-dependent. For example, this includes
generating project-files (“.vbp”) for Visual Basic 6 projects as it is
done in the example source code.

Kieker4NET

Kieker4NET is a Kieker adapter supporting monitoring of programming
languages based on Microsoft’s .NET platform [https://en.wikipedia.org/wiki/Component_Object_Model].
The adapter has been developed as a part of the
DynaMod [http://kosse-sh.de/dynamod] research project. It has been
tested particularly with C#.

..note:

This adapter has not been used for some time.

Installation of Kieker4NET

Requirements

	` JNBridgePro <http://www.jnbridge.com/>`__ license

	PostSharp license

JNBridge Download and Licensing

JNBridePro can be downloaded from
` http://www.jnbridge.com/bin/downloads.php?pr=1&id=0 <http://www.jnbridge.com/bin/downloads.php?pr=1&id=0>`__.
You’ll receive an evaluation version with a trial license. which will
remain functional for 30 days. After having submitted a registration
form, JNBridgePro is available for 32-bit and 64-bit (untested with
Kieker4NET) versions.

The following JNBridePro license types are available:

	Developer license: Required for developing Kieker4NET.

	Deployment license: Required for distributing/installing
Kieker4NET. Note, that deployment license are only available if a
developer license has been purchased before. Please note that non-OEM
(default) and OEM licenses are available.

For details on the JNBridgePro licensing, see
` http://www.jnbridge.com/store.htm <http://www.jnbridge.com/store.htm>`__.

Installing the JNBridge License

Having registered via the ` JNBridge download
page <http://www.jnbridge.com/bin/downloads.php?pr=1&id=0>`__, you
should receive an e-mail with more information on the product, including
the activation key.

Install JNBridgePro by running the setup wizard provided by the
downloaded JNBSetup6_0_x86.msi file. During the setup wizard, you’ll
have to select one of the following configurations:

	Development configuration: deployment configuration + proxy
generation tool and demos.

	Deployment configuration, including only the Java and .NET runtime
components.

The installer installs two JNBridgePro versions, one for .NET
2.0/3.0/3.5 and a second for .NET 4.0. The development configuration is
required on the machine creating the .NET proxy for the
kieker-<version>.jar. It also include the JNBridePro plugins for Visual
Studio 2005, 2008, and 2010.

Analyzing Monitoring Data

Todo

References and links must be refreshed.

In this section, we discuss the use of existing tools to analyze
monitoring data, a way to compose your own analysis based on existing
Kieker analysis stages utilizing the TeeTime pipe and filter framework,
and how to create new filters within.

	analyzing-composing-analysis-tools

	Writing your own Analysis Stages

	Analysis and Tools API (Java)

Kieker Tools

All tools can be found in the binary bundle
(kieker-1.15-binaries.zip) in the tools directory. The
tools directory contains a set of tools prepacked as tar and zip
archives. Each archive contains one tool with all its libraries and
start scripts. The start scripts are located in the bin directory
and the libraries in the lib directory. In the tool root directory,
e.g.,trace-analysis-1.14, you can find a log4j.cfg file, used
to configure the logging output for your tool. The bin directory
contains two scripts one named after the tool usable in Linux, FreeBSD,
MacOS, etc. and one with .bat extension for Windows.

To change the logging setup you can either change that file or define
additional options with the JAVA_OPTS environment variable, e.g.,

export JAVA_OPTS="-Dlogback.configurationFile=/full/path/to/logger/config/logback-trace.groovy"
or use the tool specific _OPTS variable, e.g.,
TRACE_ANALYSIS_OPTS for the trace-analysis tool.

Furthermore, you can use both variables to pass additional JVM
parameters and options to a tool.

	WebGUI (deprecated)

	Trace Analysis Tool

	Trace Analysis – GUI (deprecated)

	Convert Logging Timestamps

	Log Replayer

	Collector - Kieker Data Bridge

	Kieker Data Bridge (deprecated)

	Resource Monitor

	Instrumentation Record Language

	Dot-Pic File Converter

Please note there are other tools available for Kieker which are not
bundled with Kieker.

Developing with Kieker

In this section we discuss how to develop your own analyses with
Kieker and embed them in tools and services. We will reference
to architecture documentation and JavaDoc when needed. As this is
a living software project, there might be a discrepancy between
API documentation, architecture and the documentation in this
section. In that case, always refer to the API.

	Writing Tools and Services

	Writing UI and Web Tools

Extending Kieker

Sometimes a Kieker probe or a Kieker stage (filter) may not provide the
necessary features you have in mind. In that case, you can extend Kieker.
In this section we explain how to extend Kieker in many different ways:

	How to write new

	Records

	Probes

	Stages

	Features of Stages

	Serializaion Formats

	How to support new programming languages

	General Language and Platform Support

	File and Serialization Formats

Architecture

For certain parts of Kieker, we created architecture documentation to support
the use of Kieker and development for Kieker.

Java

	
	Kieker Java Monitoring API

	
	Java Monitoring Controller

	java-writers-api

	Monitoring Probes

	
	java-analysis-api

	
	java-readers-api

	Monitoring Records API

Generic

	File and Serialization Formats

Lectures

This tree contains tutorials presented at events such as guest lectures,
conferences, etc.

	201403-ICPE-Dublin

	201405-University-Pavia

Related Work

Monitoring Tools (commercial / non-research)

	AppDynamics [http://www.appdynamics.com/]

	Btrace [https://kenai.com/projects/btrace]

	CA Wily Introscope [http://www.ca.com/us/application-management.aspx]

	DynaTrace [http://www.dynatrace.com/de/]

	Foglight [http://www.questsoftware.de/foglight/]

	IBM Tivoli Monitoring [http://www-01.ibm.com/software/tivoli/products/monitor/]

	JAMon [http://jamonapi.sourceforge.net/]

	Java Simon - Simple Monitoring API [http://code.google.com/p/javasimon/]

	JETM [http://jetm.void.fm/]

	JINSPIRED JXInsight/OpenCore [http://www.jinspired.com/]

	Metrics [http://metrics.codahale.com/]

	MonALISA: MONitoring Agents using a Large Integrated Services Architecture [http://monalisa.caltech.edu/monalisa.htm]

	MoSKito: Health and Performance Monitoring for Java Applications [http://www.moskito.org/]

	Munin (infrastructure/system-level monitoring; similar to like Nagios?): [http://munin-monitoring.org/]

	New Relic [http://newrelic.com/]

	NovaTec inspectIT [http://www.novatec-gmbh.de/produkte/inspectit/]

	Nagios [http://www.nagios.org/]

	Perf4J [http://perf4j.codehaus.org/]

	Replay Solutions [http://www.replaysolutions.com/]

	RHQ [http://rhq-project.org/display/RHQ/Home]

	Software Diagnostics: Application Logger [http://www.softwarediagnostics.com/solutions/application-logger/]

	Software-EKG [http://qaware.de]

	Vector by Netflix [http://techblog.netflix.com/2015/04/introducing-vector-netflixs-on-host.html]

	Zabbix (server + infrastructure monitoring?) [http://www.zabbix.com]

Monitoring Tools (research)

	COMPAS JEEM (T. Parsons, A. Mos, and J. Murphy. Non-intrusive end to
end run-time path tracing for J2EE systems)

	Dyper [http://cs.brown.edu/%7Espr/research/vizdyvise.html]

	Magpie (P. Barham, R. Isaacs, R. Mortier, and D. Narayanan. Magpie:
Online modelling and performance-aware systems)

	Rainbow (S.-W. Cheng. Rainbow: Cost-Effective Software
Architecture-Based Self-Adaptation)

	SPASS-meter (Univ. Hildesheim, Germany) [http://www.uni-hildesheim.de/index.php?id=8807#c29149]

	Libmonitor [http://dx.doi.org/10.1016/j.parco.2012.10.001]

Performance/Monitoring Tools Web Sites

	SPEC Research Group [http://research.spec.org/projects/tools.html]

	http://www.monitortools.com/

	http://www.opensourcetesting.org/performance.php

Dynamic Reverse Engineering Tools

	Reverse Java [http://www.reversejava.com/reversejavahome.htm]

Log Analysis

	Graylog2 [http://www.graylog2.org/]

Repositories of Performance Data

	http://trust.salesforce.com/

Profilers

	JBoss profiler [http://www.jboss.org/jbossprofiler]

	JFluid/NetBeans Profiler [http://profiler.netbeans.org]

	Criterion [http://www.serpentine.com/blog/2009/09/29/criterion-a-new-benchmarking-library-for-haskell/]

UML Graph Libraries

	UMLGraph [http://www.umlgraph.org/]

Instrumentation Tools

	Pin [http://www.pintool.org/] (see also ATOM)

	DiSL [http://dx.doi.org/10.1145/2162049.2162077]

	FERRARI : Framework for Exhaustive Rewriting and Advanced Runtime Instrumentation [http://www.inf.usi.ch/projects/ferrari/FERRARI.html]

ARM: Application Response Measurement

	https://collaboration.opengroup.org/tech/management/arm/

	http://dx.doi.org/10.1109/IWSM.1998.668123

	OpenARM:
http://open-arm.sourceforge.net/

Trace/Control Flow Analysis/Visualization

	Fraunhofer SAVE (Software Architecture Visualization and Evaluation) [http://www.iese.fraunhofer.de/de/schnelleinstieg/produkte/]

	“a research prototype for goal-oriented analysis of software
systems. Its primary feature is architecture compliance checking”
(http://www.eclipsecon.org/summiteurope2009/sessions?id=1055)

	“SAVE supports the analysis of runtime traces of instrumented
software systems in formats based on Eclipse TPTP (Test &
Performance Tools Platform), AspeCt C (ACC), or Comma Separated
Values (CSV).”
(http://www.iese.fraunhofer.de/de/Images/SAVE_e_2009_tcm122-46390.pdf)

	HPI, Computer Graphics Systems group:
http://www.hpi.uni-potsdam.de/doellner/index.html

	Trümper, Jonas and Bohnet, Johannes and Döllner, Jürgen:
Understanding Complex Multithreaded Software Systems by Using
Trace Visualization. In Proceedings of the ACM Symposium on
Software Visualization, pp. 133-142, 2010.
(http://www.hpi.uni-potsdam.de/doellner/publications/year/2010/1219/TBD10.html)

	Trümper, Jonas and Bohnet, Johannes and Voigt, Stefan and Döllner,
Jürgen: Visualization of Multithreaded Behavior to Facilitate
Maintenance of Complex Software Systems. In Proceedings of the
International Conference on the Quality of Information and
Communications Technology, pp. 325-330, 2010.
(http://www.hpi.uni-potsdam.de/doellner/publications/year/2010/1218/TBVD10.html)

	AppDynamics (Application Management for the Cloud Generation)
(http://www.appdynamics.com/products-features-and-benefits.php)

	Dr. Garbage Tools
(http://drgarbagetools.sourceforge.net/,
http://dx.doi.org/10.2316/P.2012.790-033)

Use Cases for Dynamic Analyis

	Profiler-guided
optimization [http://en.wikipedia.org/wiki/Profile-guided_optimization]

	Monitoring-oriented
programming [http://fsl.cs.uiuc.edu/index.php/Monitoring-oriented_programming]

	…

Application/User-Space Monitoring in Linux

	UProbes/UTrace

	trace-cmd/libtracevents

Index

Analyzing Monitoring Logs within Eclipse

When you want to analyze monitoring logs wihtin Eclipse, you can use our
Eclipse-Plugin.

Step-by-step guide

	Install the Eclipse-Plugin from the following URL: TODO

Analyzing your monitoring data offline

Kieker comes with a trace diagnosis tool which allows to analyze
monitoring logs offline and produce different outputs. In detail they
are:

	Deployment-level UML sequence diagrams (.pic)

	Assembly-level UML sequence diagrams (.pic)

	Deployment-level component dependency graph (.dot) – including
deployment boundaries

	Assembly-level component dependency graph (.dot) – without
deployment boundaries

	Container dependency graph (.dot)

	Deployment-level operation dependency graph (.dot)

	Assembly operation dependency graph (.dot)

	Aggregated deployment call tree (.dot)

	Aggregated assembly call tree (.dot)

	Call trees (.txt)

	Message traces (.txt)

	Execution traces (.txt)

	Invalid execution traces (.txt)

	System model (.html)

	Deployment equivalence classes

	Assembly equivalence classes

The pic and dot files can be transformed into SVG and PDF documents with
a provided conversion script. Please consult the trace analysis page for
more details on the generated output and conversion tooling.

Furthermore, Kieker is supplemented by different tools to inspect and
analyze Kieker logs.

 .._ analyzing-composing-analysis-tools:

Composing Analysis Tools

In this section, we illustrate how to build your own analysis based on
existing stages (filters) in Kieker and TeeTime.

Writing your own Analysis Stages

File and Serialization Formats

While the Kieker architectures discuss the specific architectures of
Kieker in different programming languages, this section discusses the
language independent file formats and serialization formats, which helps
to implement new readers and writers for new and already supported
languages. As Kieker works with predefined records called events, these
types must be mentioned in serialization.

Type Mapping

	Kieker Type

	Java

	C

	Python

	boolean

	boolean

	(unsigned) char

	int

	byte

	byte

	char

	int

	short

	short

	short

	int

	int

	int

	int

	int

	long

	long

	long

	int

	float

	float

	float

	float (64bit)

	double

	double

	double

	float (64bit)

	char

	char

	short

	int

	string

	String

	const char*

	str

Binary Format Description

The binary serialization differs slightly from data streams to the file
system, as the file system uses two file types to store the information.
One to store all data type names and string, and one to store the binary
record information. The stream variant uses only one stream and sends
out all data type and string lookup data over the same stream as the
event payload. However, general serialization is done following the same
rules.

Binary Value Serialization

Basic types are serialized as follows:

	Kieker Type

	Serialization

	boolean

	signed 8-bit (0 = false, 1 = true)

	byte

	signed 8-bit

	short

	signed 16-bit, big endian

	int

	signed 32-bit, big endian

	long

	signed 64-bit, big endian

	float

	32-bit IEEE 754 floating point

	double

	64-bit IEEE 754 floating point

	char

	16-bit unicode character (unsigned)

	string

	signed 32-bit, referring to the id of the string in the lookup table

Fixed size arrays are serialized by a sequence of entries with the exact
number of entries.

Variable arrays are prefixed by a int size indicator followed by as many
entries as specified in the size indicator.

Binary String Registry Serialization

Each string or fully qualified event type name is serialized as follows:

	int (signed) fixed value -1 to indicate a string value

	int (signed) indicating the id number for the string or type name

	int (signed) the length of the string in bytes

	a sequence of bytes describing the string (note that the default
encoding for strings is UTF-8)

Binary Event Type Serialization

Each event is prefixed by

	int (signed) for the type id

	long (signed) for the logging time stamp

	followed by all data

Text Format Description

Todo

Missing text format description.

Analysis and Tools API (Java)

The Kieker analysis part supports a wide range of readers to receive
events via network and from written log files. It also provides stages
(filters) to perform a wide range of analyses. To use these stages you
can either use one of the tools provided in the tools section or create
your own. Therefore, we support building tools with our standard
architecture for services. Depending on you needs you can use our
readers and receivers in three different ways.

	Directly use the respective TeeTime-based filters from
kieker-analysis (see kieker-analysis source
stages) [https://github.com/kieker-monitoring/kieker/tree/master/kieker-analysis/src/kieker/analysis/source].
They can be configured in Java via parameters.

	Use the composite stages provided by the kieker-tools (see
kieker-tools composite
stages) [https://github.com/kieker-monitoring/kieker/tree/master/kieker-tools/src/kieker/tools/source].
They take all their configuration via a Kieker configuration object.

	Use the receiver instantiation factory (see
SourceStageFactory) [https://github.com/kieker-monitoring/kieker/blob/master/kieker-tools/src/kieker/tools/source/SourceStageFactory.java].
It allows to select and configure a receiver stage based on a
configuration object. In case you use the configuration file feature
for your tool (see Writing Tools and Services) then you can
use the factory to setup the event receiving part in one line. The
collector [https://github.com/kieker-monitoring/kieker/tree/master/kieker-tools/collector/src/kieker/tools/collector]
is a good example to implement such tool.

	Receive Events from Log Files

	Receive Events via TCP from Multiple Sources (MultipleConnectionTcpSourceCompositeStage)

	Receive Events via AMQP (AMQPReaderStage)

	Receive Events via JMS (JMSReaderStage)

	Receive Events via HTTP/JSON (RestServiceCompositeStage)

	Writing Tools and Services

	developing-with-kieker-writing-ui-and-web-tool

Kieker Java Monitoring API

The framework provides a set of APIs for monitoring in Java. The core
component ist the Monitoring Controller which utilizes
Monitoring Writers to store or transmit monitoring data collected by
Monitoring Probes based on Monitoring Records.

Note

Maybe add an overview graphic here.

	Java Monitoring Controller

	Monitoring Records API

	Monitoring Probes

	Analysis and Tools API (Java)

	Java Writer API

	File Writer

	Single Socket TCP Writer

	Receive Events from Log Files

	Receive Events via AMQP (AMQPReaderStage)

	Receive Events via HTTP/JSON (RestServiceCompositeStage)

	Receive Events via JMS (JMSReaderStage)

	Receive Events via TCP from Multiple Sources (MultipleConnectionTcpSourceCompositeStage)

Java Monitoring Controller

The MonitoringController constructs and controls a
KiekerMonitoringPart instance.

[image: ../../_images/kieker_monitoringControlleruserguide-simplified.svg]
Class diagram of the MonitoringController (including selected methods)

As depicted by the class diagram in the Figure above, it provides methods
for

	Creating IMonitoringController instances (Section~ref{sec:componentsMonitoring:monitoringController:factory}),

	Logging monitoring records with the configured monitoring writer (Section~ref{sec:componentsMonitoring:monitoringController:logging}),

	Retrieving the current time via the configured time source (Section~ref{sec:componentsMonitoring:monitoringController:getTime}),

	Scheduling and removing period samplers (Section~ref{sec:componentsMonitoring:monitoringController:periodicSamplers}),

	Controlling the monitoring state (Section~ref{sec:componentsMonitoring:monitoringController:controState}), and

	Activating and deactivating probes at runtime ref{sec:componentsMonitoring:monitoringController:adaptive}.

Creating MonitoringController Instances

The MonitoringController provides two different static methods for
retrieving instances of IMonitoringController:

	The method MonitoringController.getInstance() returns a singleton
instance. As described in Section~ref{sec:monitoring:configuration},
the configuration is read from a properties file that has been passed
to the JVM, is located in the classpath, or conforms to the default
configuration (Appendix~ref{sec:appdx:monitoringproperties}).

	The method MonitoringController.createInstance(Configuration config)
can be utilized to create an instance that is configured according to
the passed Configuration object, as described in
Section~ref{sec:monitoring:configuration}.

Logging Monitoring Records

Monitoring records are sent to the configured monitoring writers by
passing these records, in form of IMonitoringRecord objects, to the
MonitoringController’s newMonitoringRecord method. Note, that
this is not the case if monitoring is disabled or terminated (Section~ref{sec:componentsMonitoring:monitoringController:controState}).

Retrieving the Current Time and Using Custom Time Sources

The current time is maintained by a so-called time source. The MonitoringController’s method getTimeSource returns an
ITimeSource whose method getTime returns a timestamp in
nanoseconds. Kieker’s default time source, SystemNanoTimer,
returns the current system time as the number of nanoseconds elapsed
since 1 Jan 1970 00:00~UTC. The easiest way to use a custom time source
is to extend the AbstractTimeSource and to implement the method
getTime(). Custom time sources make sense, for example, in
simulations where not the current system time but the current simulation
time is relevant. The configuration needs to be adjusted to use a custom
time source class.

Scheduling and Removing Periodic Samplers

For certain applications, it is required to monitor runtime data
periodically, e.g., the utilization of system resources such as CPUs.
For this purpose, Kieker supports special monitoring probes, called samplers. Samplers must implement the interface ISampler which
includes a single method sample(IMonitoringController monitoringController)
This method is called in periodic time steps, as specified by the MonitoringController’s registration function
schedulePeriodicSampler. Periodic samplers can be stopped by
calling the MonitoringController’s method removeScheduledSampler.

The Listing below shows the sample method of the
MemSwapUsageSampler which can be used to monitor memory and swap
usage employing the OSHI library <https://github.com/oshi/oshi>.

Likewise to other monitoring probes described in this userguide (e.g.,
java-monitoring-probe), it collects the data of interest
(lines 60–65), creates a monitoring record (lines 67–71), and passes
this monitoring record to the monitoring controller
(line 73). The available OSHI-based samplers for monitoring system-level
monitoring data, such as CPU and memory usage, are available in kieker.monitoring.sampler.oshi.

Note

reference to probes JavaDoc or OSHI intro page

	52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

	@Override
public void sample(final IMonitoringController monitoringCtr) {
 if (!monitoringCtr.isMonitoringEnabled() ||
 !monitoringCtr.isProbeActivated(SignatureFactory.createMemSwapSignature())) {
 return;
 }
 final GlobalMemory globalMemory = this.hardwareAbstractionLayer.getMemory();

 final long memoryTotal = globalMemory.getTotal();
 final long memoryAvailable = globalMemory.getAvailable();
 final long memoryUsed = memoryTotal - memoryAvailable;
 final long swapTotal = globalMemory.getSwapTotal();
 final long swapUsed = globalMemory.getSwapUsed();
 final long swapFree = swapTotal - swapUsed;

 final MemSwapUsageRecord r = new MemSwapUsageRecord(
 monitoringCtr.getTimeSource().getTime(),
 monitoringCtr.getHostname(),
 memoryTotal, memoryUsed, memoryAvailable,
 swapTotal, swapUsed, swapFree);

 monitoringCtr.newMonitoringRecord(r);
}

Controlling the Monitoring State

The MonitoringController provides methods to temporarily enable or
disable monitoring (enableMonitoring/disableMonitoring), as well
as to terminate monitoring permanently (terminateMonitoring).
The current state can be requested by calling the methods
isMonitoringEnabled and isMonitoringTerminated. If monitoring is
not enabled (i.e., disabled or terminated), no monitoring records
retrieved via the method newMonitoringRecord are passed to the
monitoring writer. Also, probes should be passive or return immediately
with respect to the return value of the method isMonitoringEnabled.
Note, that once the MonitoringController is terminated, it cannot be
enabled later on.

Adaptive Monitoring

The MonitoringController provides an API to activate and deactivate
probes at runtime. By passing a method signature—e.g.,
"public void Bookstore.getBook()"—to the method isProbeActivated, probes can check whether or not monitoring for the method with the given
signature is active.
Monitoring can be (de)activated for single signature patterns—e.g.,
"public void Bookstore.*(..)"— via the methods activateProbe
and deactivateProbe. The current list of (de)activated patterns can
be obtained via the method getProbePatternList.
The entire list can be replaced using the method setProbePatternList.
Alternatively, a file with include and exclude patterns can be used.
This file can be polled in regular intervals.
A default configuration file, including a description of the pattern
syntax, is provided by the file
kieker.monitoring.adaptiveMonitoring.example.conf in the examples/ directory of the binary release.

Note

This section might be outdated and should be checked with the current
implementation, as there are different ways to send information to
the probe controller.

With the same mechanism arbitrary probes can be controlled. The syntax
is also included in the above file. For example, Kieker’s probes for
CPU and memory make use of this mechanism.

By default, Kieker’s adaptive monitoring feature is deactivated.
It can be enabled by setting the value of the configuration property
kieker.monitoring.adaptiveMonitoring.enabled in the
\monitoringPropertiesFile file to true. Additional properties
to configure the adaptive monitoring are included in the file
kieker.monitoring.properties, e.g., the location of the
aforementioned file with include/exclude patterns and the polling
interval for this file.

Monitoring Probes

The probes are responsible for collecting the monitoring data and
passing it to the monitoring controller. Monitoring probes are highly
dependant on the technology used to implement them. Still, there is
a general pattern on how to implement probes.

In order to avoid multiple calls to the getInstance method of the
MonitoringController class, a singleton instance should be stored
in a final static variable.

private final static IMonitoringController CTRL =
 MonitoringController.getInstannce();

The probe code usually comes with a check whether monitoring and the
probe is active, followed by a sequence where data is collected, and
finished by a

if (CTRL.isMonitoringEnabled()) {
 final String signature = <get method signature>
 if (CTRL.isProbeActivated(signature)) {
 int entryTime = CTRL.getTimeSource().getTime();
 // collect further parameters

 CTRL.newMonitoringRecord(new Record(<parameters>));
 }
}

<continue call>

There are many predefined probes available for Kieker which can be found
in <https://github.com/kieker-monitoring/kieker/tree/master/kieker-monitoring/src/kieker/monitoring/probe>.
These can also be used as a starting point for self built probes.

Monitoring Records API

Monitoring records are objects that contain the monitoring data, e.g.,
timestamps, operation names, and resource utilization values. Typically,
an instance of a monitoring record is constructed in a java-probes-api_
passed to the java-monitoring-controller-api_,
serialized and deserialized by a java-writer-api_ and java-reader-api_.
In getting-started_, we already introduced and used the monitoring
record type OperationExecutionRecord. Kieker allows to use custom
monitoring record types. Corresponding classes must implement the
interface IMonitoringRecord and serialization and deserialization must
use IValueSerializer and IValueDeserializer to serialize and
deserialize values based on a specific theme.

Todo

References in the text block above are not resolved.

IMonitoringRecord API

In order to use the abstract class for implementing your own monitoring
record type, you need to: Create a class that extends
AbstractMonitoringRecord and imlements IMonitoringRecord.
In detail the following methods must be defined.

Note

Please note that we provide a code generator which automatically
generates Kieker compatible record structures for you based on a
simple DSL. It is easier and saver to use our DSL to generate
record types than to create them by hand.

	Getter and setter for the logging timestamp.
- public long getLoggingTimestamp();
- public void setLoggingTimestamp(long timestamp);

	A propper toString method for debugging purposes.
- public String toString();

	A serializer method to serialize values. The method
public void serialize(IValueSerializer serializer) throws BufferOverflowException;
must use a IValueSerializer to serialize values. For all simple
types boolean, byte, short, char, int, long, float,
double, and string, the proper serializer functions must be used
and for all enumerations putEnumeration.

Arrays come in two flavors in Kieker. Fixed sized arrays are
written as a sequence of entries based on the primitive type. In
multi dimensional arrays the right most array represents the inner
loop, while the left most the outer loop. In variable arrays, the
writing of array entries is preceded by an int containing the
length of the array.

	Return an array of the types used in the record and the names of the
attributes of the record
- public Class<?>[] getValueTypes();
- public String[] getValueNames();

	Record size method. Provides the size of the record as defined by SIZE.
public int getSize();

Additionally, the class must contain three static variables called
- SIZE representing the size of the record based on its static part. Thus, it does not reflect the real size when dynamic arrays are used.
- TYPES array of all types which is returned by getValueTypes.
- VALUE_NAMES array of all attribute names which is returned by getValueNames.

The class EntryLevelBeforeOperationEvent in the Listing below, is an
example of a custom monitoring record type. It is based on an existing
type BeforeOperationEvent and used to collect call trace information
and entry level parameters used in servlet requests and similar service
endpoints.

In our DSL, this record looks like this:

template IPayloadCharacterization {
 string[] parameters
 string[] values
 int requestType
}

event EntryLevelBeforeOperationEvent extends BeforeOperationEvent :
 IPayloadCharacterization

The event EntryLevelBeforeOperationEvent extends
BeforeOperationEvent and inherits parameter from the template
IPayloadCharacterization. The template define two dynamic string
arrays and one integer value.

More details on the DSL can be found in the DSL documentation.

Todo

Add reference to DSL documentation when available.

package org.example.record;

import java.nio.BufferOverflowException;

import kieker.common.exception.RecordInstantiationException;
import kieker.common.record.flow.trace.operation.BeforeOperationEvent;
import kieker.common.record.io.IValueDeserializer;
import kieker.common.record.io.IValueSerializer;

public class EntryLevelBeforeOperationEvent extends BeforeOperationEvent implements IMonintoringRecord {

The class inherits attributes from BeforeOperationEvent which in
turn inherits attributes from different types. These are
- timestamp time when the event occured (as opposed to loggingTimeStamp which represents the time when the event was logged.
- traceId the id of the trace this record belongs to.
- orderIndex the sequence number of the event within the trace.
- operationSignature the operation to be executed.
- classSignature the signature of the class the operation belongs to.

The SIZE, TYPES and VALUE_NAMES constant. As you can see
from the comments, these attributes originate from other types. Still
they must be listed here, as we use this list as a fast lookup.
Similarily, the attribute names must all be listed in VALUE_NAMES.

public static final int SIZE = TYPE_SIZE_LONG // IEventRecord.timestamp
 + TYPE_SIZE_LONG // ITraceRecord.traceId
 + TYPE_SIZE_INT // ITraceRecord.orderIndex
 + TYPE_SIZE_STRING // IOperationSignature.operationSignature
 + TYPE_SIZE_STRING // IClassSignature.classSignature
 + TYPE_SIZE_STRING // IPayloadCharacterization.parameters
 + TYPE_SIZE_STRING // IPayloadCharacterization.values
 + TYPE_SIZE_INT; // IPayloadCharacterization.requestType

public static final Class<?>[] TYPES = {
 long.class, // IEventRecord.timestamp
 long.class, // ITraceRecord.traceId
 int.class, // ITraceRecord.orderIndex
 String.class, // IOperationSignature.operationSignature
 String.class, // IClassSignature.classSignature
 String[].class, // IPayloadCharacterization.parameters
 String[].class, // IPayloadCharacterization.values
 int.class, // IPayloadCharacterization.requestType
};

/** property name array. */
public static final String[] VALUE_NAMES = {
 "timestamp",
 "traceId",
 "orderIndex",
 "operationSignature",
 "classSignature",
 "parameters",
 "values",
 "requestType",
};

private static final long serialVersionUID = -3583783831259543534L;

Declaration of additional parameters which cannot be inherited.

/** property declarations. */
private final String[] parameters;
private final String[] values;
private final int requestType;

Constructor for value based initialization. Normally used inside of
probes.

public EntryLevelBeforeOperationEvent(final long timestamp, final long traceId, final int orderIndex, final String operationSignature, final String classSignature, final String[] parameters, final String[] values, final int requestType) {
 super(timestamp, traceId, orderIndex, operationSignature, classSignature);
 this.parameters = parameters;
 this.values = values;
 this.requestType = requestType;
}

Constructor used to initialize the record using a deserializer. Note
also in this constructor inherited attributes can be deserialized by the
constructor of the inherited class.

In this example, the record has two attributes with a dynamic string
array type. Thus, the constructor first reads the array size, before
reading the string values.

public EntryLevelBeforeOperationEvent(final IValueDeserializer deserializer) throws RecordInstantiationException {
 super(deserializer);
 // load array sizes
 final int _parameters_size0 = deserializer.getInt();
 this.parameters = new String[_parameters_size0];
 for (int i0=0;i0<_parameters_size0;i0++)
 this.parameters[i0] = deserializer.getString();

 // load array sizes
 final int _values_size0 = deserializer.getInt();
 this.values = new String[_values_size0];
 for (int i0=0;i0<_values_size0;i0++)
 this.values[i0] = deserializer.getString();

 this.requestType = deserializer.getInt();
}

To be able to send or store records, they must be serialized. This is
implemented by the following function.

@Override
public void serialize(final IValueSerializer serializer) throws BufferOverflowException {
 serializer.putLong(this.getTimestamp());
 serializer.putLong(this.getTraceId());
 serializer.putInt(this.getOrderIndex());
 serializer.putString(this.getOperationSignature());
 serializer.putString(this.getClassSignature());
 // store array sizes
 int _parameters_size0 = this.getParameters().length;
 serializer.putInt(_parameters_size0);
 for (int i0=0;i0<_parameters_size0;i0++)
 serializer.putString(this.getParameters()[i0]);

 // store array sizes
 int _values_size0 = this.getValues().length;
 serializer.putInt(_values_size0);
 for (int i0=0;i0<_values_size0;i0++)
 serializer.putString(this.getValues()[i0]);

 serializer.putInt(this.getRequestType());
}

Further API functions.

@Override
public Class<?>[] getValueTypes() {
 return TYPES; // NOPMD
}

@Override
public String[] getValueNames() {
 return VALUE_NAMES; // NOPMD
}

@Override
public int getSize() {
 return SIZE;
}

@Override
public boolean equals(final Object obj) {
 if (obj == null) {
 return false;
 }
 if (obj == this) {
 return true;
 }
 if (obj.getClass() != this.getClass()) {
 return false;
 }

 final EntryLevelBeforeOperationEvent castedRecord = (EntryLevelBeforeOperationEvent) obj;
 if (this.getLoggingTimestamp() != castedRecord.getLoggingTimestamp()) {
 return false;
 }
 if (this.getTimestamp() != castedRecord.getTimestamp()) {
 return false;
 }
 if (this.getTraceId() != castedRecord.getTraceId()) {
 return false;
 }
 if (this.getOrderIndex() != castedRecord.getOrderIndex()) {
 return false;
 }
 if (!this.getOperationSignature().equals(castedRecord.getOperationSignature())) {
 return false;
 }
 if (!this.getClassSignature().equals(castedRecord.getClassSignature())) {
 return false;
 }
 // get array length
 int _parameters_size0 = this.getParameters().length;
 if (_parameters_size0 != castedRecord.getParameters().length) {
 return false;
 }
 for (int i0=0;i0<_parameters_size0;i0++)
 if (!this.getParameters()[i0].equals(castedRecord.getParameters()[i0])) {
 return false;
 }

 // get array length
 int _values_size0 = this.getValues().length;
 if (_values_size0 != castedRecord.getValues().length) {
 return false;
 }
 for (int i0=0;i0<_values_size0;i0++)
 if (!this.getValues()[i0].equals(castedRecord.getValues()[i0])) {
 return false;
 }

 if (this.getRequestType() != castedRecord.getRequestType()) {
 return false;
 }

 return true;
}

@Override
public int hashCode() {
 int code = 0;
 code += ((int)this.getTimestamp());
 code += ((int)this.getTraceId());
 code += ((int)this.getOrderIndex());
 code += this.getOperationSignature().hashCode();
 code += this.getClassSignature().hashCode();
 // get array length
 for (int i0=0;i0 < this.parameters.length;i0++) {
 for (int i1=0;i1 < this.parameters.length;i1++) {
 code += this.getParameters()[i0].hashCode();
 }
 }

 // get array length
 for (int i0=0;i0 < this.values.length;i0++) {
 for (int i1=0;i1 < this.values.length;i1++) {
 code += this.getValues()[i0].hashCode();
 }
 }

 code += ((int)this.getRequestType());

 return code;
}

Getters and (setters if necessary) for every new attribute.

 public final String[] getParameters() {
 return this.parameters;
 }

 public final String[] getValues() {
 return this.values;
 }

 public final int getRequestType() {
 return this.requestType;
 }

}

Receive Events from Log Files

Todo

We might want to remove the old teetime file reader filters, as they
are no longer used.

The old file reading stages setup in Teetime is rather complicated, uses
deprecated Kieker API and has a bad separation of concern, e.g.,
decompression is part of the binary log file reader and not a general
property of file reading. The following figure depicts this reading
setup.

[image: ../../../_images/old-teetime-file-reader.svg]To overcome the limitations and reduce complexity the new Kieker reader
API uses the depicted LogsReaderCompositeStage architecture. It
provides a generic Kieker reader complementing the capabilities of the
Receive Events from Log Files. The image below depicts
the new Teetime-filters providing log file reading.

[image: ../../../_images/new-teetime-file-reader.svg]The LogsReaderCompositeStage comprises of two stages
DirectoryScannerStage and DirectoryReaderStage, where the first
scans directories for Kieker logs and provides directories to the second
stage, and the second stage processes each log directory.

DirectoryScannerStage

This stage scans a list of directories for Kieker log directories. They
are identified by the kieker.map file.

Configuration Options

none

DirectoryReaderStage

Presently, Kieker log directories consist of a kieker.map file and
one or more kieker-* log files containing one or more serialized
events. Depending on their extension the files can be compressed in
different formats and they can be in binary or UFT-8 text format.
TAbstractEventDeserializerhey also could be in other formats, but this
is currently not supported by Kieker directly. The general workflow for
reading Kieker logs is to read the kieker.map file and then the
other log files. The map-file contains a mapping between ids and text,
where some entries are used to describe Kieker event (record) class
names and assign them ids used in the serialization.

As depicted in the figure above, the DirectoryReaderStage uses a map
reader to read in map files. Currently there is only a text map reader.
The map reader can utilize an IDecompressionFilter to read
compressed map-files. The filter is inserted into the Java IO stream and
should not be confused with Teetime stages.

After the map files are read, the DirectoryReaderStage starts
reading all log files in chronological order. Depending on their
extension, the stage first decompresses the data stream and then
utilizes a IEventDeserializer. The deserializers can support a wide
range of formats. However, Kieker ships currently with a
DatEventDeserializer and a BinaryEventDeserializer supporting
the two formats generated by the
Receive Events from Log Files. The filter
automatically determines which file formats have been used based on file
suffixes.

Configuration Options

none

AbstractEventDeserializer

The AbstractEventDeserializer is the parent class for all
IEventDeserializers. It provides common configuration options for the
deserializers.

Configuration Options

	kieker.analysisteetime.plugin.reader.filesystem.AbstractEventDeserializer.bufferSize
= size of the buffer in bytes (default 10240)

Receive Events via AMQP (AMQPReaderStage)

Reading monitoring events via AMQP.

Configuration Options

Receive Events via HTTP/JSON (RestServiceCompositeStage)

The RestServiceCompositeStage allows to receive events via HTTP in
form of a REST request. At its core, it uses the RestServiceStage
and has three parameters.

Parameter

Please note that parameters must be prefixed by the canonical name of
the composite stage kieker.tools.source.RestServiceCompositeStage

	hostname : hostname to listen for when accessed (aka virtual host
name); can be null

	port : TCP port to listen to

	accessRestrictionHandler : class name of a access restriction
handler. There are currently two access restriction handler available
implementing (IAccessHandler)

	AllAccessHandler

	NetworkAccessHandler (experimental)

Format of the events

[“RecordClassName”, all parameters]

Further reading

	Source code
RestServiceCompositeStage.java [https://github.com/kieker-monitoring/kieker/blob/master/kieker-tools/src/kieker/tools/source/RestServiceCompositeStage.java]

Receive Events via JMS (JMSReaderStage)

Support reading monitoring events from an local or remote JMS server.

Configuration Options

Receive Events via TCP from Multiple Sources (MultipleConnectionTcpSourceCompositeStage)

Allows multiple probes from different execution environments to send
their events to one stage.

	All data is received in a binary format using network byte order (big
endian)

	Strings and class names are transmitted once for each kind and are
stored in a registry with an id. This allows to encode events with
numerical values only.

	New registry entries are transmitted before the first event using it

Format of registry entries

	Indicator that this is not a record (value is -1) : int (32bit)

	Registry id : int (32bit)

	Length of the string in bytes : int (32bit) ; the length in bytes may
not correspond with the number of characters, depending on the
encoding (e.g. utf-8)

	Bytes representing the string in a specific encoding (default is
utf-8) : byte[] (8bit)

Format of a record

	Id of the record type : int (32bit) ; corresponds to the id of the
class name stored in the string registry

	All values are in binary using the default Java representation

	Strings are represented as int (32bit) referring to a registry entry

Further details can be found

	Source code
MultipleConnectionTcpSourceCompositeStage.java [https://github.com/kieker-monitoring/kieker/blob/master/kieker-tools/src/kieker/tools/source/MultipleConnectionTcpSourceCompositeStage.java]

	Java Doc [http://api.kieker-monitoring.net/1.14/kieker/tools/source/MultipleConnectionTcpSourceCompositeStage.html]

File Writer

The file writer is a highly configurable component of Kieker. It allows
to use different map file and log file formats which can both be
compressed using a compression filter. Furthermore, different log file
pool strategies can be used, i.e., a user can collect all information or
use a log rotation scheme where the amount of space used by logs is
limited.

[image: ../../../_images/file-writer-architecture.svg]
File Writer Configuration

The new FileWriter uses the IValueSerializer API to serialize files. It
is available since Kieker 1.14. Like the old file writers, it comes with
a wide range of settings. It usually writes two files. One containing a
map of strings to ids and one logfile.

To use the new FileWriter set

kieker.monitoring.writer=kieker.monitoring.writer.FileWriter

in your kieker.monitoring.properties file.
In order to use a custom directory, set customStoragePath to a
existing directory. Kieker will then write its log folders into this
directory.

kieker.monitoring.writer.filesystem.FileWriter.customStoragePath=

The FileWriter uses UTF-8 as default char set. However, you may want to
specify another charset with

kieker.monitoring.writer.filesystem.FileWriter.charsetName=UTF-8

As host file systems have limits on file length and to avoid losing all
data when the log is corrupted, you can limit the maximal number of
entries (events) per created file. The value must be greater than zero.

kieker.monitoring.writer.filesystem.FileWriter.maxEntriesInFile=25000

The maximal file size of the generated monitoring log. Older files will
be deleted if this file size is exceeded. Given in MiB. Note: At
least one file will always remain, regardless of size! Use -1 to ignore
this functionality.

kieker.monitoring.writer.filesystem.FileWriter.maxLogSize=-1

The maximal number of log files generated. Older files will be deleted
if this number is exceeded. At least one file will always remain,
regardless of size! Use -1 to ignore this functionality.

kieker.monitoring.writer.filesystem.FileWriter.maxLogFiles=-1

As mentioned before, the FileWriter writes a map of all strings to a map
file. This is usually done by the TextMapFileHandler, which is the
default. You may choose another map file handler.

kieker.monitoring.writer.filesystem.FileWriter.mapFileHandler=kieker.monitoring.writer.filesystem.TextMapFileHandler

When flushing is disabled, it could require a lot of events before
finally any writing to the map file is done. In case of long running
observations, this is the desired behavior. However, in shorter
experiments and in cases when the application crashes, it is helpful to
ensure all map entries have been written as soon as possible. To force
flushing on the the map file, set the following property to true.

kieker.monitoring.writer.filesystem.TextMapFileHandler.flush=true

As map files can become quite large, you may want to compress the output
of the TextMapFileHandler (compression not supported yet)

kieker.monitoring.writer.filesystem.TextMapFileHandler.compression=kieker.monitoring.writer.filesystem.compression.NoneCompressionFilter

Log file pool handler manages when files are written, how they are named
and when they are removed. The default RotatingLogFilePoolHandler
which supports a upper limit of log files which are kept.

kieker.monitoring.writer.filesystem.FileWriter.logFilePoolHandler=kieker.monitoring.writer.filesystem.RotatingLogFilePoolHandler

The log stream handler writes the text output. Default is the
TextLogStreamHandler (text serialization in standard Kieker format)

kieker.monitoring.writer.filesystem.FileWriter.logStreamHandler=kieker.monitoring.writer.filesystem.TextLogStreamHandler

Alternatively, you may use the BinaryLogStreamHandler which serializes
the data in binary format.

kieker.monitoring.writer.filesystem.FileWriter.logStreamHandler=kieker.monitoring.writer.filesystem.BinaryLogStreamHandler

You may want to write your own LogStreamHandler, e.g., to support JSON
as output format.

When flushing is disabled, it could require a lot of events before
finally any writing to the log file(s) is done. To force flushing on the
set the following parameter.

kieker.monitoring.writer.filesystem.FileWriter.flush=false

When flushing is disabled, records are buffered in memory before
written. This setting configures the size of the used buffer in

bytes.kieker.monitoring.writer.filesystem.FileWriter.bufferSize=8192

When compression is enabled, each log file is written as zipped binary
file.

kieker.monitoring.writer.filesystem.FileWriter.compression=kieker.monitoring.writer.filesystem.compression.NoneCompressionFilter

Depending on the libraries used alongside Kieker, you can user ZIP, GZIP
and XZ compression. The corresponding classes are:

	NoneCompressionFilter no compression

	GZipCompressionFilter

	XZCompressionFilter

	ZipCompressionFilter

You can write your own compression filter utilizing the
ICompressionFilter interface.

Java Writer API

Monitoring writers serialize monitoring records to the monitoring
log/stream and persist the recorded informations into files and databases
or send the events to an analysis service.
All writers must implement the interface IMonitoringWriter. The
monitoring controller passes the received records to an internal queue
which is connected to the MonitoringWriterThread instance. The
latter calls the writeMonitoringRecord method of the writer.

All writers must inherit AbstractMonitoringWriter which provides
basic functionality and defines the interface of all writers. The
API introduces a simple protocol for task to be performed on start and
when terminating, i.e.:

	Construction and configuration

	onStarting

	writeMonitoringRecord (multiple calls)

	onTerminating

The constructor can be used to access the Kieker configuration
object and configure parameters of the writer, e.g., buffer sizes, file
names etc.

public AbstractMonitoringWriter(final Configuration configuration) {
 this.configuration = configuration;
}

On startup specific tasks must be performed. For example, in a file
writer, the file can be initialized.

public abstract void onStarting();

The main function is
.. code-block:: java

public abstract void writeMonitoringRecord(IMonitoringRecord record);

which is called every time a new record must be send or stored.

The last method is
.. code-block:: java

public abstract void onTerminating();

it is called at the end of the monitoring. In a file writer, this
function would close the file.

There are several different writers available. Most prominent are the
FileWriter for text and binary files, and the TcpWriter to send
file to a logging or analysis service.

List of Writers:
- File Writer
- Single Socket TCP Writer
- AmqpWriter <https://github.com/kieker-monitoring/kieker/blob/master/kieker-monitoring/src/kieker/monitoring/writer/amqp/AmqpWriter.java>
- ChunkingAmqpWriter <https://github.com/kieker-monitoring/kieker/blob/master/kieker-monitoring/src/kieker/monitoring/writer/amqp/ChunkingAmqpWriter.java>
- DumpWriter <https://github.com/kieker-monitoring/kieker/blob/master/kieker-monitoring/src/kieker/monitoring/writer/dump/DumpWriter.java> (does not log anything)
- ExplorVizTcpWriter <https://github.com/kieker-monitoring/kieker/blob/master/kieker-monitoring/src/kieker/monitoring/writer/explorviz/ExplorVizTcpWriter.java> writer for ExplorViz
- JmsWriter <https://github.com/kieker-monitoring/kieker/blob/master/kieker-monitoring/src/kieker/monitoring/writer/jms/JmsWriter.java>
- JmxWriter <https://github.com/kieker-monitoring/kieker/blob/master/kieker-monitoring/src/kieker/monitoring/writer/jmx/JmxWriter.java>
- PipeWriter <https://github.com/kieker-monitoring/kieker/blob/master/kieker-monitoring/src/kieker/monitoring/writer/namedRecordPipe/PipeWriter.java>
- PrintStreamWriter <https://github.com/kieker-monitoring/kieker/blob/master/kieker-monitoring/src/kieker/monitoring/writer/print/PrintStreamWriter.java>

Current Kieker writer API uses always a fast pipe implementation to
decouple the writers from the data collection. This has been shown to
be the fastest setup for monitoring.

Todo

Move these snippets to separate files in future.

JmsWriter and JmxWriter

The JmsWriter* and **JmxWriter write records to a
Java Messaging Service (JMS) <https://en.wikipedia.org/wiki/Java_Message_Service>
queue and Java Management Extensions (JMX) <https://www.oracle.com/java/technologies/javase/javamanagement.html>
queue respectively.

PipeWriter

The PipeWriter allows to pass records via in-memory record streams
(named pipes). These writers allow to implement on-the-fly analysis in
distributed systems, i.e., analysis while continuously receiving new
monitoring data from an instrumented application potentially running
on another machine.

Single Socket TCP Writer

A hostname of the service to connect to

kieker.monitoring.writer.tcp.SingleSocketTcpWriter.hostname=localhost

The port to connect to

kieker.monitoring.writer.tcp.SingleSocketTcpWriter.port=9879

Buffer size for writing

kieker.monitoring.writer.tcp.SingleSocketTcpWriter.bufferSize=8192

Activate or deactivate buffer flushing after each record

kieker.monitoring.writer.tcp.SingleSocketTcpWriter.flush=TRUE

Connection timeout

kieker.monitoring.writer.tcp.SingleSocketTcpWriter.connectionTimeoutInMs

Writing Tools and Services

When we want to write new analysis tools and services with Kieker and
Teetime, a lot of boilerplate code to

	parse command line parameters,

	read configuration files,

	check parameters from both sources,

	assemble a pipe and filter configuration,

	provide shutdown hooks for services,

	and execute everything.

Therefore, we created an AbstractService class providing the
necessary code and also ensuring certain basic functions. Alongside this
class, we envision a specific architecture. It comprises

	a main class, e.g., MyToolMain, extending AbstractService,

	a configuration class for the command line parameter utilizing
JCommander for all command line properties (it may include additional
parameter which is up to you),

	and a TeetimeConfiguration class, e.g.,
MyTeetimeConfiguration.

For smaller applications you can place all command line parameters in
your main class and use it as both configuration and main class.

To support checking of parameters and configuration file options, we
provide a helper class ParameterEvaluation to further analyze
properties.

A typical main class looks like:

public MyToolMain extends AbstractService<MyTeetimeConfiguration,
 MyParameterSettings> {

 /*
 * This is a simple main class which does not need to be instantiated.
 */
 private MyToolMain() {
 }

 /*
 * main functions.
 *
 * @param args arguments are ignored
 */
 public static void main(final String[] args) {
 java.lang.System.exit(new MyToolMain().run("Application Title",
 "Logger Label", args, new MyParameterSettings()));
 }

 @Override
 protected MyTeetimeConfiguration createTeetimeConfiguration() throws
 ConfigurationException {
 /* do some preparatory stuff. */
 return new MyTeetimeConfiguration(...);
 }

 @Override
 protected boolean checkParameters(final JCommander commander) throws
 ConfigurationException {
 return true; // only if all parameters check out
 }

 @Override
 protected void shutdownService() {
 // empty, no special shutdown required
 }

 @Override
 protected File getConfigurationFile() {
 return this.parameterConfiguration.getConfigurationFile();
 }

 @Override
 protected boolean checkConfiguration(final Configuration configuration,
 final JCommander commander) {
 return true; // only if every configuration file option checks out
 }
}

A example Teetime configuration looks like:

public class MyTeetimeConfiguration extends Configuration {

 public MyTeetimeConfiguration(...) {
 SomeStange stage1 = new SomeStage();
 SomeOtherStage stage2 = new SomeOtherStage();

 this.connectPorts(stage1.getOutputPort(), stage2.getInputPort());
 }
}

Writing UI and Web Tools

Writing tools with a nice user interface either as a desktop or a
web-based application requires to find a neat way to embed Kieker
analysis tools. For that purpose we provide the class
AbstractEmbeddableService. The class provides two main control
methods run and terminate. We do not provide a progress
mechanism, as this is analysis specific and should be realized through a
progress indicating stage.

Beside the control methods, each service requires three methods to work
properly. In detail they are

	logError to log exceptions during setup

	shutdownService comprising tasks to perform after a service has
finished its task

	createTeetimeConfiguration used to prepare and instantiate the
Teetime configuration

General Language and Platform Support

Kieker can be used to instrument and monitor different programming
languages and protocols. Depending on the language and platform
different methods of structuring and naming data structures, functions,
methods, object and modules exist. However, we want to ensure some
familiarity between all languages. Thus, this page contains some
guidelines how to define and structure a language support projects.

Conceptual Directory Structure

	common

	records

	All the records generated automatically with the IRL compiler
or crafted by hand

	utilities

	Utility functions, e.g., for serialization

	monitoring

	controller

	Functionality and data structures to create and setup a
monitoring controller, including a way to gain the current
time, thread, process etc.

	Monitoring controller governs everything, including a
shutdown hook if this is possible

	Writer controller which coordinates sending data somewhere
or storing data in a file following the Kieker file formats
(see File and Serialization Formats).
The writer controller might support different writers for
different purposes which can be configured at runtime or
compile time, depending on the language.

	In some setups, it is helpful to be able to store data in
probe. Therefore, it is an optional feature to provide the
setup of runtime properties in a probe controller. A
Typical feature is to activate and deactivate probes at
runtime. However, this could also be achieved by other means
depending on the language. This features is required in case
beside monitoring also actors should be implemented.

	The probe controller can get its information from a file or
by other means. Like the Java implementation of Kieker which
accepts data events via TCP. Be aware that using this option
can be a vulnerability issue. Therefore, such TCP connection
must be governed by security measures.

	probes

	Probes contain ready to use implementations of probes for a
specific language.

	README.md [http://README.md] (containing basic information about
the project, build instructions and references to the wiki to explain
how the package is used)

	License

Language Pack Naming

The language pack should be named kieker-lang-pack-LANGUAGE or if
monitoring and common are packed in different libraries
kieker-monitoring-lang-pack-LANGUAGE and
kieker-common-lang-pack-LANGUAGE.

Supported Languages

	Java

	C, C++, Fortran

	Perl (dated)

	Python (upcoming)

	VB6, COM, .NET (see DynaMod project)

AspectJ Instrumentation Example

AspectJ [https://www.eclipse.org/aspectj/] allows to weave code into
the byte code of Java applications and libraries without requiring
manual modifications of the source code. We show below how to use Java
annotation to instrument code and how to do this without any change of
the source code. Kieker includes the AspectJ-based monitoring probes

	OperationExecutionAspectAnnotation,

	OperationExecutionAspectAnnotationServlet,

	OperationExecutionAspectFull, and

	OperationEx-ecutionAspectFullServlet

which can be woven into Java applications at compile time and load time.
These probes monitor method executions and corresponding trace and
timing information. The probes with the postfixServletstore a
session identifier within theOperationExecutionRecord. When the
probes with name elementAnnotationare used, methods to be
monitored must be annotated by the Kieker
annotation@OperationExecutionMonitoringProbe.

This section demonstrates how to use the AspectJ-based probes to monitor
traces based on the Bookstore application.

The Java sources of the example presented in this section, as well as a
pre-compiled binary, can be found in
theexamples/userguide/ch5-trace-monitoring-aspectj/directory of
the binary release.

The directory structure used in this example is as follows:

	examples

	userguide/

	ch5–trace-monitoring-aspectj/

	build/ Directory for the Java class files

	libs/

	BookstoreApplication.jar

	gradle/

	wrapper/ Directory for the gradle wrapper

	lib/Directory for the needed libraries

	kieker-1.15-aspectj.jar

	src/kieker/examples/userguide/ch5bookstore/ Directory
for the source code files

	Bookstore.java

	BookstoreHostnameRewriter.java

	BookstoreStarter.java

	Catalog.java

	CRM.java

	src-resources/META-INF/ Directory for the
configuration files

	aop.xml

	aop-event.xml

	aop-full.xml

	kieker.monitoring.adaptiveMonitoring.conf

	kieker.monitoring.properties

	build.gradle

	gradlew

	gradlew.bat

	README.txt

The jar-filekieker-1.15-aspectj.jaralready includes the
AspectJ weaver, which is registered with the JVM and weaves the
monitoring instrumentation into the Java classes. It will be configured
based on the configuration fileaop.xml, for which a working sample
file is provided in the example’sMETA-INF/directory. Instead of
registering thekieker-1.15-aspectj.jaras an agent to
the JVM, theaspectjweaver-1.8.2.jarcan be used. In this case,
thekieker-1.15.jarneeds to be added to the classpath.

Instrumentation by Annotation

Once the necessary files have been copied to the example directory, the
source code can be instrumented with the
annotation OperationExecutionMonitoringProbe. The below listing
shows how the annotation is used.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	public class Bookstore {

 private final Catalog catalog = new Catalog();
 private final CRM crm = new CRM(this.catalog);

 @OperationExecutionMonitoringProbe
 public void searchBook() {
 this.catalog.getBook(false);
 this.crm.getOffers();
 }

}

As a first example, each method of the Bookstore application will be
annotated. The annotation can be used to instrument all methods except
for constructors.The aop.xml file has to be modified to specify
the classes to be considered for instrumentation by the AspectJ weaver.
The listing below shows the modified configuration file.

	1
2
3
4
5
6
7
8
9

	<!DOCTYPE aspectj PUBLIC "-//AspectJ//DTD//EN" "http://www.aspectj.org/dtd/aspectj_1_5_0.dtd">
<aspectj>
 <weaver options="">
 <include within="kieker.examples.userguide.ch5bookstore..*"/>
 </weaver>
 <aspects>
 <aspect name="kieker.monitoring.probe.aspectj.operationExecution.OperationExecutionAspectAnnotation"/>
 </aspects>
</aspectj>

Line 5 tells the AspectJ weaver to consider all classes inside the
example package. AspectJ allows to use wildcards for the definition of
classes to include, e.g.,
<include within=”bookstoreTracing.Bookstore∗”/> to weave all classes
with the prefix Bookstore located in
apackage bookstoreTracing. Line 9 specifies the aspect to be woven
into the classes. In this case, the Kieker
probe OperationExecutionAspectAnnotation is used. It requires that
methods intended tobe instrumented are annotated by
@OperationExecutionMonitoringProbe, as mentioned before. Below we
show how to compile and run the annotated Bookstore application.
The aop.xml must be located in a META-INF/ directory in the
classpath – in this case the build/ directory. The AspectJ weaver
has to be loaded as a so-called Java-agent. It weaves the monitoring
aspect into the byte code of the Bookstore application. Additionally,
a kieker.monitoring.properties is copied to
the META-INF/ directory. This configuration file may be adjusted
as desired.

Unix version:

	1
2
3
4
5
6
7
8
9

	mkdir build/META−INF
javac src/kieker/examples/userguide/ch5bookstore/∗.java \
 -d build/ -classpath lib/kieker-1.15-aspectj.jar

cp src−resources/META−INF/aop.xml build/META−INF/
cp src−resources/META−INF/kieker.monitoring.properties build/META−INF/

java -javaagent:lib/kieker-1.15-aspectj.jar \
 -classpath build/ kieker.examples.userguide.ch5bookstore.BookstoreStarter

Windows version:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	mkdir build\META−INF

javac src\kieker\examples\userguide\ch5bookstore\∗.java
 -d build -classpathlib\kieker-1.15-aspectj.jar

copy src−resources\META−INF\aop.xml build\META−INF\
copy src−resources\META−INF\kieker.monitoring.properties build\META−INF\

java -javaagent:lib\kieker-1.15-aspectj.jar
 -classpath build\kieker.examples.userguide.ch5bookstore.BookstoreStarter

After a complete run of the application, the monitoring files should
appear in the same way as described in manual instrumentation including
the additional trace information.

Instrumentation without Changing the Code

Instrumentation without annotations AspectJ-based instrumentation
without using annotations is quite simple. It is only necessary to
modify the fileaop.xml, as shown in the following listing. In the
example directory a prepared version is provided named aop-full.xml.

	1
2
3
4
5
6
7
8
9

	<!DOCTYPE aspectj PUBLIC "-//AspectJ//DTD//EN" "http://www.aspectj.org/dtd/aspectj_1_5_0.dtd">
<aspectj>
 <weaver options="">
 <include within="kieker.examples.userguide.ch5bookstore..*"/>
 </weaver>
 <aspects>
 <aspect name="kieker.monitoring.probe.aspectj.operationExecution.OperationExecutionAspectFull"/>
 </aspects>
</aspectj>

The alternative aspect OperationExecutionAspectFull is being
activated in line 9. As indicated by its name, this aspect makes sure
that every method within the included classes/packages will be
instrumented and monitored. Line 5 illustrates how to limit the
instrumented methods to those of the classBookstoreStarter.

This configuration file may be adjusted as desired. Please note here the
aop-full.xml is copied to the META-INF folder and renamed to
aop.xml, as this is necessary for AspectJ to find the aspect
configuration.

Unix version:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	mkdir build/META−INF

javac src/kieker/examples/userguide/ch5bookstore/∗.java \
 -d build/ -classpath lib/kieker-1.15-aspectj.jar

cp src−resources/META−INF/aop-full.xml build/META−INF/aop.xml
cp src−resources/META−INF/kieker.monitoring.properties build/META−INF/

java -javaagent:lib/kieker-1.15-aspectj.jar \
 -classpath build/ kieker.examples.userguide.ch5bookstore.BookstoreStarter

Windows version:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	mkdir build\META−INF

javac src\kieker\examples\userguide\ch5bookstore\∗.java
 -d build -classpathlib\kieker-1.15-aspectj.jar

copy src−resources\META−INF\aop-full.xml build\META−INF\aop.xml
copy src−resources\META−INF\kieker.monitoring.properties build\META−INF\

java -javaagent:lib\kieker-1.15-aspectj.jar
 -classpath build\kieker.examples.userguide.ch5bookstore.BookstoreStarter

After a complete run of the application, the monitoring files should
appear in the same way as described in manual instrumentation including
the additional trace information.

Download and Extract Tutorial

The Kieker download site http://kieker-monitoring.net/download/
provides archives of the binary and source distribution, special
bundles, the Javadoc~API, as well as additional examples. For this quick
start guide, Kieker’s binary distribution, e.g.,
kieker-1.15-binaries.zip, is required and must be downloaded. After
having extracted the archive, you’ll find the directory structure and
contents shown below

	kieker-1.15-binaries/

	bin Call scripts for old style Kieker tools

	build/libs Kieker framework libraries

	doc Old style documentation

	examples Example projects and configuration files

	userguide Source code of the examples in this document

	tools Packaged Kieker tools

	HISTORY

	LICENSE

	README

The Java sources presented in this user guide, as well as pre-compiled
binaries, are included in the examples/userguide/ directory. The
file kieker-1.15.jar contains the Kieker.Monitoring and
Kieker.Analysis components, as well as the Kieker.Trace-Analysis
tool. The sample Kieker.Monitoring configuration
file kieker.monitoring.ex-ample.properties will be detailed in
Chapter 3. In addition to the kieker-1.15.jar file,
the build/libs/ directory includes variants of
this .jar files with integrated third-party libraries. Additional
information on these .jar files and when to use them will follow
later in this document.

Manual Monitoring with Kieker

In this section, we explain the preparations for application monitoring,
the instrumentation of the application, and the actual monitoring.

Note

In this example, the instrumentation is done manually. This means that
the monitoring probe is implemented by mixing monitoring logic with
business logic, which is often not desired since the resulting code is
hard to maintain. Kieker includes probes based on AOP (aspect-oriented
programming technology. However, to illustrate the instrumentation in
detail, the quick start example uses manual instrumentation.

The first step is to copy the Kieker jar-file
kieker-1.15-emf.jar to the lib/ directory of the example directory.
The file is located in the kieker-1.15/build/libs/ directory of the
extracted Kieker archive (see download instructions). In the example
directory for this section, this file is already included, as
illustrated below.

	examples/
- userguide/

	ch2–manual-instrumentation/
- build/ Directory for the Java class files
- lib/ Directory for the required libraries

	kieker-1.15-emf.jar

	src/ The directory for the source code files

The Java sources and pre-compiled binaries of the manually instrumented
Bookstore application described in this section can be found in
theexamples/userguide/ch2-manual-instrumentation/directory.

Kieker maintains monitoring data as so-called monitoring records.
Section 3.3 describes how to define and use custom monitoring record
types. The monitoring record type used in this example is an
OperationExecutionRecord which is included in the Kieker
distribution. The next figure shows the attributes which are relevant to
this example. The record type definition can be found here.

[image: ../_images/records-class-diagram.svg]
Central event type classes in Kieker for Java

The attributes relevant to this part are operationSignature and
hostname, as well as tin and tout for the timestamps before and
after the call of the instrumented method. The following listing shows
the instrumentation of the Bookstore class and its method
searchBook(). In the lines 25 and 26, the monitoring controller is
instantiated. It provides the monitoring service for the
instrumentation.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	private static final IMonitoringController MONITORING_CONTROLLER =
 MonitoringController.getInstance();

private final Catalog catalog = new Catalog();
private final CRM crm = new CRM(this.catalog);

public void searchBook() {
 // 1.) Call Catalog.getBook() and log its entry and exit timestamps.
 final long tin = MONITORING_CONTROLLER.getTimeSource().getTime();
 this.catalog.getBook(false); // <-- the monitored execution
 final long tout = MONITORING_CONTROLLER.getTimeSource().getTime();
 final OperationExecutionRecord e = new OperationExecutionRecord(
 "public void " + this.catalog.getClass().getName() +
 ".getBook(boolean)",
 OperationExecutionRecord.NO_SESSION_ID,
 OperationExecutionRecord.NO_TRACE_ID,
 tin, tout, "myHost",
 OperationExecutionRecord.NO_EOI_ESS,
 OperationExecutionRecord.NO_EOI_ESS);

 MONITORING_CONTROLLER.newMonitoringRecord(e);

 // 2.) Call the CRM catalog's getOffers() method (without monitoring).
 this.crm.getOffers();
}

The lines 32 and 34 are used to determine the current time in
nanoseconds before and after the getBook() call. In lines 36 to 42,
a monitoring record for this measurement is created and initialized,
passing the method signature, the hostname, and the two time values as
arguments. Finally, the record is handed over to the monitoring
controller (line 43) which calls a monitoring writer to persist the
record. In this example, the filesystem writer is used – Kieker uses
this writer by default when no other writer is specified, as detailed in
Section 3.5. In [http://3.5.In] addition to the instrumentation in
the Bookstore class, the getOffers() method of
the CRM class is instrumented as well. Similar to the Listing
above, measurements are taken before and after the call of
the catalog’s getBook() method, as shown in lines 36 and 38
of the Listing below. Not shown in the listing is the instantiation of
the monitoring controller.However, it is done in the same way as
illustrated above. Finally, a record is created (see lines 40–46) and
stored by calling the monitoring controller (see line 47).

Todo

Fix section references

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	public void getOffers() {
 // 1.) Call Catalog.getBook() and log its entry and exit timestamps.
 final long tin = MONITORING_CONTROLLER.getTimeSource().getTime();
 this.catalog.getBook(false); // <-- the monitored execution
 final long tout = MONITORING_CONTROLLER.getTimeSource().getTime();
 final OperationExecutionRecord e = new OperationExecutionRecord(
 "public void " + this.catalog.getClass().getName() +
 ".getBook(boolean)",
 OperationExecutionRecord.NO_SESSION_ID,
 OperationExecutionRecord.NO_TRACE_ID,
 tin, tout, "myHost",
 OperationExecutionRecord.NO_EOI_ESS,
 OperationExecutionRecord.NO_EOI_ESS);
 MONITORING_CONTROLLER.newMonitoringRecord(e);
}

The next step after instrumenting the code is running the instrumented
application. Below we show the commands to compile and run the
application under UNIX-like systems and Windows. The expected working
directory is the base directory of this example,
i.e. examples/userguide/ch2-manual-instrumentation/.

javac src/kieker/examples/userguide/ch2bookstore/manual/∗.java \
 -classpath lib/kieker-1.15-emf.jar -d build/

java -classpath build/:lib/kieker-1.15-emf.jar \
 kieker.examples.userguide.ch2bookstore.manual.BookstoreStarter

Under Windows it is necessary to separate the classpath elements by a
semicolon instead of a colon. Also, we recommend to use the Windows
shell cmd.exe for this tutorial since problems have been reported
for the Windows PowerShell. Also input each command on one line

javac src\kieker\examples\userguide\ch2bookstore\manual\∗.java
 -classpath lib\kieker-1.15-emf.jar -d build\

java -classpath build\;lib\kieker-1.15-emf.jar
 kieker.examples.userguide.ch2bookstore.manual.BookstoreStarter

If everything worked correctly, a new directory for the monitoring data
with a name similar to kieker-20120402-163314855-UTC-myHost-KIEKER-SINGLETON/
is created (compare structure below). In Kieker’s default
configuration, the log directory can be found in the default temporary
directory: under UNIX-like systems, this is typically /tmp/; check
the environment variables $TMPDIR or %temp% for the location
under MacOS or Windows respectively. The exact location of the created
monitoring log is reported in Kieker’s console output (see for
example Appendix H.1).

Todo

Resolve this broken reference to the appendix.

The monitoring directory contains two types of files: .dat files
containing text representations of the monitoring records and a file
namedkieker.mapwhich contains information on the types of
monitoring records used.

	/tmp/

	kieker-20130910-120352847-UTC-myHost-KIEKER-SINGLETON/

	kieker.map

	kieker-20120402-163314882-UTC–000-Thread-1.dat

Todo

Fix listing references.

The Listings 2.11 and 2.12 show example file contents.
The .dat-file is saved in CSV format (Comma Separated Values) - in
this case, the values of a monitoring record are separated by
semicolons. To understand the .dat - file structure the semantics
have to be explained. For this quick start example only some of the
values are relevant. The first value $1 indicates the record type.
The fourth value indicates the class and method which has been called.
And the seventh and eighth value are the start and end time of the
execution of the called method.

$0;1378814632852912850;1.8;KIEKER−SINGLETON;myHost;1;false;0;NANOSECONDS;1
$1;1378814632852360525;public void kieker.examples.userguide.ch2bookstore.manual.Catalog.getBook(boolean);<no−session−id>;−1;1378814632849896821;1378814632852105483;myHost;−1;−1

The second file is a simple mapping file referencing keys to monitoring
record types. In the mapping file the key $1 is mapped to the type
of operation execution records which were used in the monitoring. The
key value corresponds to the key values in the .dat-file.

$0=kieker.common.record.misc.KiekerMetadataRecord
$1=kieker.common.record.controlflow.OperationExecutionRecord

By the end of this section, two Java classes of the Bookstore
application have been manually instrumented using Kieker.Monitoring
and at least one run of the instrumented application has been performed.
The resulting monitoring log, written to the .dat-file in CSV
format, could already be used for analysis or visualization by any
spreadsheet or statistical tool. The next step in this tutorial is to
show how to process this monitoring data with Kieker.Analysis.

The Bookstore Example Application

The Bookstore application is a small sample application resembling a
simple bookstore with a market-place facility where users can search for
books in an online catalog, and subsequently get offers from different
book sellers.

Contents

	The Bookstore Example Application

	Architecture of the Bookstore

	Introducing the Implementation

	Main method from BookstoreStarter.java

	Bookstore.java

	CRM.java

	Compile and Run the Bookstore

	Example output

Architecture of the Bookstore

The following figure shows a class diagram describing the structure of
the bookstore and a sequence diagram illustrating the dynamics of the
application.

	
[image: ../_images/kieker_bookstoreclassdiagram.svg]
Bookstore Class Diagram

	
[image: ../_images/kieker_SequenceDiagram-manually-changed.svg]
Boockstore Sequence Diagram

The bookstore contains a catalog for books and a Customer Relationship
Management System (CRM) for the book sellers. To provide this service,
the different classes provide operations to initialize the application,
search for books, and get offers or searched books. In this example, the
methods implementing these operations are merely stubs. However, for the
illustration of Kieker, they are sufficient and the inclined reader may
extend the application into a real bookstore.

Introducing the Implementation

The directory structure of the Bookstore example is

	ch2-bookstore-application

	src/kieker/examples/userguide/ch2bookstore/

	Bookstore.java

	BookstoreStarter.java

	Catalog.java

	CRM.java

	build.gradle

	gradlew

	graldew.bat

	README.txt

It comprises four Java classes in its source directory (ADD LOCATION
HERE), which are explained in detail below.

The Java sources and a pre-compiled binary of the uninstrumented
Bookstore application can be found in the
examples/userguide/ch2-bookstore-application/ directory.

The class BookstoreStarter contains the application’s main
method (shown in the listing below), i.e., the program start routine. It
initializes the Bookstore and issues five search requests by calling
the searchBook method of the bookstore object.

Main method from BookstoreStarter.java

public static void main(final String[] args) {

 final Bookstore bookstore = new Bookstore();

 for (int i = 0; i < 5; i++) {
 System.out.println("Bookstore.main: Starting request " + i);
 bookstore.searchBook();
 }
}

The Bookstore, shown below, contains a catalog and a CRM object,
representing the catalog of the bookstore and a customer relationship
management system which can provide offers for books out of the catalog.
The business method of the bookstore is searchBook() which will
first check the catalog for books and then check for offers.

In a real application these methods would pass objects to ensure the
results of the catalog search will be available to the offer collecting
method. However, for our example we omitted such code.

Bookstore.java

public class Bookstore {

 private final Catalog catalog = new Catalog();
 private final CRM crm = new CRM(this.catalog);

 public void searchBook() {
 this.catalog.getBook(false);
 this.crm.getOffers();
 }

}

The customer relationship management for this application is modeled in
the CRM class shown the next listing. It provides only a business
method to collect offers by using the catalog for some lookup. The
additional catalog lookup is later used to illustrate different traces
in the application.

CRM.java

public class CRM {

 private final Catalog catalog;

 public CRM(final Catalog catalog) {
 this.catalog = catalog;
 }

 public void getOffers() {
 this.catalog.getBook(false);
 }
}

Finally, the class Catalog, below, resembles the catalog component
in the application.

public class Catalog {

 public void getBook(final boolean complexQuery) {
 // nothing to do here
 }
}

Compile and Run the Bookstore

After this brief introduction of the application and its implementation,
the next step is to see the example running. To compile and run the
example, the commands in the next listing can be executed. This document
assumes that the reader enters the commands in the example directory.
For this first example this
isexamples/userquide/ch2-bookstore-application/.

To compile and start the code, enter the
examples/userquide/ch2-bookstore-application/ and run

	./gradlew run for Linux, MacOS and others

	gradlew.bat run in Windows

Recompiling can be triggered with

	./gradlew jar for Linux, MacOS and others

	gradlew.bat jar in Windows

Also the bundle already includes a pre-compiled version which can be
started with

	java -jar build/libs/BookstoreApplication.jar

When executed, the application should print the following lines:

Example output

Bookstore.main: Starting request 0
Bookstore.main: Starting request 1
Bookstore.main: Starting request 2
Bookstore.main: Starting request 3
Bookstore.main: Starting request 4

Using Kieker Trace-Analysis

Kieker comes with a wide range of analysis stages which can be used to
analyze monitoring data. There is extensive documentation on how to
build tools with Kieker analysis in Writing Tools and Services.
For this Getting Started chapter, we want to focus on using existing
tooling, specifically the trace-analysis tool.

Monitoring data collected by the previous steps contains trace
information based on OperationExecutionRecords that can be
analyzed and visualized with the Kieker trace-analysis tool which
is included in the Kieker binary distribution. The tool outputs dot
and pict files.

In order to use this tool, it is necessary to install two third-party
pro-grams:

Note

	GraphViz A graph visualization software which can be down-loaded
from http://www.graphviz.org

	GNU PlotUtils A set of tools for generating 2D plotgraphics which
can be downloaded
from http://www.gnu.org/software/plotutils/ (for Linux) and
from http://gnuwin32.sourceforge.net/packages/plotutils.htm (for
Windows).

	ps2pdf The ps2pdf tool is used to convert ps files to pdf
files.

Under Windows it is recommended to add the bin/ directories of
both tools to the “path” environment variable. It is also possible that
the GNU PlotUtils are unable to process sequence diagrams. In this case
it is recommended to use the Cygwin port of PlotUtils.

Once both programs have been installed, the Kieker
trace-analysis tool can be used. It can be found in the tools
directory of the Kieker binary release. Unpack the
trace-analysis-1.14.zip alongside the jpetstore-6 directory.
Start scripts can then be found in
trace-analysis-1.14/bin/trace-analysis (Unix) and
trace-analysis-1.14/bin/trace-analysis.bat (Windows).
Non-parameterized calls of the scripts print all possible options on the
screen.The commands shown in Listings below generate a sequence diagram
as well as a call tree to an existing directory named out/. The
monitoring data is assumed to be located in the logging directory, e.g.,
kieker-20200615-130444-341575577055999-UTC--KIEKER/ alongside the
jpetstore-6 directory.

Before executing the trace-analysis, you need to create the out/
directory alongside the jpetstore-6 directory.

Unix version

trace-analysis-1.14/bin/trace-analysis -inputdirs
trace-analysis-1.14/bin/trace-analysis \
 -inputdirs kieker-20200615-130444-341575577055999-UTC--KIEKER \
 -outputdirout/ \
 -plot-Deployment-Sequence-Diagrams–plot-Call-Trees–short-labels

Windows version

trace-analysis-1.14/bin/trace-analysis.bat
 -inputdirs kieker-20200615-130444-341575577055999-UTC--KIEKER
 -outputdir out\
 -plot-Deployment-Sequence-Diagrams–plot-Call-Trees–short-labels

The resulting contents of the out/ directory should be similar to
the following tree:

	out/

	deploymentSequenceDiagram-6120391893596504065.pic
- callTree-6120391893596504065.dot
- system-entities.html

The .pic and .dot files can be converted into other formats,
such as .pdf, by using the GraphViz and Plot Utils
tools dot and pic2plot. Type the following to generate PDF
file from the graphics.

dot callTree−6120391893596504065.dot -T pdf -o callTree.pdf
pic2plot deploymentSequenceDiagram−6120391893596504065.pic-T pdf > sequenceDiagram.pdf

Note

The scripts dotPic-fileConverter.sh and dotPic-fileConverter.bat
convert all .pic and .dot in a specified directory. The scripts
can be found in the bin directory of the Kieker binary distribution.

Example Kieker Trace-Analysis Outputs

The examples presented in this section were generated based on the
monitoring data which can be found in the
directory examples/userguide/ch5-trace-monitoring-aspectj/testdata/kieker-20100830-082225522-UTC/.
It consists of 1635 traces of the Bookstore application with
AspectJ-based instrumentation, as described in the gt-aspectj-instrumentation-example.
In order to illustrate the visualization of distributed traces, the
hostname of the Catalog’s method getBook was probabilistically
changed to a second hostname. The output can be found in the
directory examples/userguide/ch5-trace-monitoring-aspectj/testdata/kieker-20100830-082225522-UTC-example-plots/.

Todo

Fix reference to example.

Textual Trace and Equivalence Class Representations

Execution Traces

Textual execution trace representations of valid/invalid traces are
written to an output file using the command-line options
--print-Execution-Tracesand --print-invalid-Execution-Traces.
The following listing shows the execution trace representation for the
valid trace … 6129.

TraceId 6488138950668976129 (minTin=1283156498770302094 (Mon, 30 Aug
2010 08:21:38.770 +0000 (UTC));

maxTout=1283156498820012272 (Mon, 30 Aug 2010 08:21:38.820 +0000 (UTC));
maxEss=2):

<6488138950668976129[0,0] 1283156498770302094−1283156498820012272
SRV0::@3:bookstoreTracing.Bookstore.searchBook N/A>

<6488138950668976129[1,1] 1283156498770900902−1283156498773404399
SRV1::@1:bookstoreTracing.Catalog.getBook N/A>

<6488138950668976129[2,1] 1283156498817823953−1283156498820007367
SRV0::@2:bookstoreTracing.CRM.getOffers N/A>

<6488138950668976129[3,2] 1283156498817855493−1283156498819999771
SRV1::@1:bookstoreTracing.Catalog.getBook N/A

Message Traces

Textual message trace representations of valid traces are written to an
output file using the command-line option --print-Message-Traces.
The listing below shows the message trace representation for the valid
trace … 6129.

Trace 6488138950668976129:

<SYNC−CALL 1283156498770302094
’Entry’−−>6488138950668976129[0,0]1283156498770302094−1283156498820012272
SRV0::@3:bookstoreTracing.Bookstore.searchBook N/A>

<SYNC−CALL 1283156498770900902 6488138950668976129[0,0]
1283156498770302094−1283156498820012272SRV0::@3:bookstoreTracing.Bookstore.searchBook
N/A−−>6488138950668976129[1,1]1283156498770900902−1283156498773404399
SRV1::@1:bookstoreTracing.Catalog.getBook N/A>

<SYNC−RPLY 1283156498773404399 6488138950668976129[1,1]
1283156498770900902−1283156498773404399SRV1::@1:bookstoreTracing.Catalog.getBook
N/A−−>6488138950668976129[0,0]1283156498770302094−1283156498820012272
SRV0::@3:bookstoreTracing.Bookstore.searchBook N/A>

<SYNC−CALL 1283156498817823953 6488138950668976129[0,0]
1283156498770302094−1283156498820012272SRV0::@3:bookstoreTracing.Bookstore.searchBook
N/A−−>6488138950668976129[2,1]1283156498817823953−1283156498820007367
SRV0::@2:bookstoreTracing.CRM.getOffers N/A>

<SYNC−CALL 1283156498817855493 6488138950668976129[2,1]
1283156498817823953−1283156498820007367SRV0::@2:bookstoreTracing.CRM.getOffers
N/A−−>6488138950668976129[3,2]1283156498817855493−1283156498819999771
SRV1::@1:bookstoreTracing.Catalog.getBook N/A>

<SYNC−RPLY 1283156498819999771 6488138950668976129[3,2]
1283156498817855493−1283156498819999771SRV1::@1:bookstoreTracing.Catalog.getBook
N/A−−>6488138950668976129[2,1]1283156498817823953−1283156498820007367
SRV0::@2:bookstoreTracing.CRM.getOffers N/A>

<SYNC−RPLY 1283156498820007367 6488138950668976129[2,1]
1283156498817823953−1283156498820007367SRV0::@2:bookstoreTracing.CRM.getOffers
N/A−−>6488138950668976129[0,0]1283156498770302094−1283156498820012272
SRV0::@3:bookstoreTracing.Bookstore.searchBook N/A>

<SYNC−RPLY 1283156498820012272 6488138950668976129[0,0]
1283156498770302094−1283156498820012272SRV0::@3:bookstoreTracing.Bookstore.searchBook
N/A−−>’Entry’>

Trace Equivalence Classes

Deployment/assembly-level trace equivalence classes are computed and
written to output files using the command-line options
--print-Deployment-Equivalence-Classes and
--print-Assembly-Equivalence-Classes. The following listings show
the output generated for the monitoring data used in this section for
deployment and assembly, respectively.

Deployment

Class 0 ; cardinality : 386; # executions: 4; representative :
6488138950668976130; max. stack depth: 2
Class 1 ; cardinality : 706; # executions: 4; representative :
6488138950668976129; max. stack depth: 2
Class 2 ; cardinality : 187; # executions: 4; representative :
6488138950668976141; max. stack depth: 2
Class 3 ; cardinality : 356; # executions: 4; representative :
6488138950668976131; max. stack depth: 2

Assembly

Class 0 ; cardinality : 1635; # executions: 4; representative :
6488138950668976129; max. stack depth: 2

Sequence Diagrams

Deployment-Level Sequence Diagrams

Deployment-level sequence diagrams are generated using the command-line
option --plot-Deployment-Sequence-Diagrams. The following image
show these sequence diagrams for each deployment-level trace equivalence
representative (6129, 6130, 6131, 6141).

[image: Trace 6129]
Trace 6129

[image: Trace 6130]
Trace 6130

[image: Trace 6131]
Trace 6131

[image: Trace 6141]
Trace 6141

Assembly-Level Sequence Diagrams

Assembly-level sequence diagrams are generated using the command-line
option --plot-Assembly-Sequence-Diagrams. The following figure shows
the sequence diagram for the assembly-level trace equivalence
representative.

[image: Trace 6129]
Trace 6129

Call Trees

Trace Call Trees

Trace call trees are generated using the command-line option
--plot-Call-Trees. The following figures show call trees for each
deployment-level trace equivalence representative.

[image: Call Trees]
Call Trees

Aggregated Call Trees

Aggregated deployment/assembly-level call trees are generated using the
command-line options --plot-Aggregated-Deployment-Call-Treeand
--plot-Aggregated-Assembly-Call-Tree. The following figures show
these aggregated call trees for the traces contained in the monitoring
data used in this section. The deployment call tree is on the left and
the right is the assembly call tree.

[image: Aggregated Deployment Call Tree]
Aggregated Assembly Call Tree

[image: Aggregated Assembly Call Tree]
Aggregated Assembly Call Tree

Dependency Graphs

Container Dependency Graphs

A container dependency graph is generated using the command-line option
--plot-Container-Dependency-Graph. The next figure shows the
container dependency graph for the monitoring data used in this section.

[image: Container Dependency Graph]
Container Dependency Graph

Component Dependency Graphs

Deployment/assembly-level component dependency graphs are generated
using the command-line options
--plot-Deployment-Component-Dependency-Graphand
--plot-Assembly-Component-Dependency-Graph.

[image: Deployment Component Dependency Graph]
Deployment Component Dependency Graph

[image: Assembly Component Dependency Graph]
Assembly Component Dependency Graph

Operation Dependency Graphs

Deployment/assembly-level operation dependency graphs are generated
using the command-line options
--plot-Deployment-Operation-Dependency-Graph and
--plot-Assembly-Operation-Dependency-Graph.

[image: Deployment Operation Dependency Graph]
Deployment Operation Dependency Graph

[image: Assembly Operation Dependency Graph]
Assembly Operation Dependency Graph

Response Times in Dependency Graphs

The afore-mentioned dependency graphs can also be decorated by the
response times,adding the minimum, the average, and the maximum response
times of the components.The decoration will be generated with one of the
additional responseTimes commandline parameters behind the
corresponding plot- command.

[image: Response Time - Assembly Component Dependency Graph]
Response Time - Assembly Component Dependency Graph

HTML Output of the System Model

The Kieker trace-analysis writes an HTML representation of the
system model reconstructed from the trace data to a
filesystem-entities.html. The following screenshot depicts the
output rendered by a web browser.

[image: System Model Output]

System Model Output

Adaptive Monitoring

This article is a stub, as there are different technologies available to
adaptively instrument applications. However, we need a place to collect
some content.

Note

There is a section in Java Monitoring Controller also
addressing this topic. The grammar should be moved to API and
only referenced from here.

Note

Please recheck whether the grammar is still correct.

Note

Add list of options how to control adaptive monitoring.

Configuring Kieker for Adaptive Monitoring

Control Probes

Pattern Parsing Grammar

The Java pattern parser follows essentially the following grammar.
Please note that this is going to change in the future.

Pattern parsing grammar

Pattern: WS* TrimmedPattern WS*

TrimmedPattern: '%' java.util.regex.Pattern | KiekerPattern

KiekerPattern: '*' | Modifiers ReturnType FQName '(' WS* Parameters WS* ')' Throws?

Modifiers: (Visibility WS)? (Abstract WS)? (Static WS)?
 (Final WS)? (Synchronized WS)? (Native WS)?

Visibility: "public" | "private" | "protected" | "package"

Abstract: "abstract" | "non_abstract"

Static: "static" | "non_static"

Final: "final" | "non_final"

Synchronized: "synchronized" | "non_synchronized"

Nativ: "native" | "non_native"

ReturnType: "new" | FQClassName

FQName: FQClassName '.' methodName

Parameters: (
 ".." |
 ".." Parameter |
 "*" |
 FQClassName) Parameter*

Parameter: ".." | "*" | FQClassName

Throws: WS* "throws" Parameters WS*

FQClassName: ID ('.' ID)*

Application Traces in Java

An introduction to this topic can be found in our tutorial How to
perform Trace Analysis

Monitoring Resource Consumption

Kieker comes with a wide range of samplers to collect resource
consumption. Currently, we use OSHI for these samplers.

Note

Please note that there might be new OSHI feature available not listed
here.

Setting Up Samplers

Samplers can be added to software manually, via AspectJ probes and as
listeners in Java servlet setups. Of course it is possible to use other
means of injection. Feel free to create a probe based on the existing
sampler API. To create your own probe, you have to create a proper
injection setup and use the OshiSamplerFactory to create samplers.

Manual Setup

Sampler must be run in a separate thread otherwise they would block
execution. Kieker comes, therefore, with the ability to schedule samples
within the controller.

private static final IMonitoringController CTRL =
 MonitoringController.getInstance();

final IOshiSamplerFactory oshiFactory = OshiSamplerFactory.INSTANCE;

ISampler sampler = oshiFactory.createSensorCPUsDetailedPerc();

CTRL.schedulePeriodicSampler(sampler, 0, 100, TimeUnit.MILLISECONDS);

Available Samplers

Currently, the following sampler are available:

CPUsCombinedPercSampler.java

Collects the combined utilization of each CPU in a system (user, system,
nice and wait). Each value is stored in a ResourceUtilizationRecord

entity ResourceUtilizationRecord {
 long timestamp = 0

 /* Name of the host, the resource belongs to. */
 string hostname = ""

 /* Name of the resource. */
 string resourceName = ""

 /* Value of utilization. The value should be in the range [0,1] */
 double utilization = 0.0
}

CPUsDetailedPercSampler.java

Collects detailed utilization values differentiated by user, system,
nice and wait for each CPU in the system.

entity CPUUtilizationRecord {

 /* Date/time of measurement. The value should be interpreted as the
 * number of nano-seconds elapsed since Jan 1st, 1970 UTC. */
 long timestamp = 0

 /* Name of the host, the resource belongs to. */
 string hostname = ''

 /* Identifier which is unique for a CPU on a given host. */
 string cpuID = ''

 /* Fraction of time during which the CPU was used for user-space
 * processes. The value should be in the range [0,1] */
 double user = 0.0

 /* Fraction of time during which the CPU was used by the kernel. The
 * value should be in the range [0,1] */
 double system = 0.0

 /* Fraction of CPU wait time. The value should be in the range [0,1] */
 double wait = 0.0

 /* Fraction of time during which the CPU was used by user space
 * processes with a high nice value. The value should be in the
 * range [0,1] */
 double nice = 0.0

 /* Fraction of time during which the CPU was used by user space
 * processes with a high nice value. The value should be in the
 * range [0,1] */
 double irq = 0.0

 /* Fraction of time during which the CPU was utilized. Typically,
 * this is the sum of {@link #user}, {@link #system}, {@link #wait},
 * and {@link #nice}. The value should be in the range [0,1] */
 double totalUtilization = 0.0

 /* Fraction of time during which the CPU was idle. The value should
 * be in the range [0,1] */
 double idle = 0.0
}

DiskUsageSampler.java

Collect persistent memory (disc) usage.

entity DiskUsageRecord {
 long timestamp = 0
 string hostname = ""
 string deviceName = ""
 double queue = 0.0
 double readBytesPerSecond = 0.0
 double readsPerSecond = 0.0
 double serviceTime = 0.0
 double writeBytesPerSecond = 0.0
 double writesPerSecond = 0.0
}

LoadAverageSampler.java

Collects load averages of the system.

entity LoadAverageRecord {
 long timestamp = 0
 string hostname = ""
 double oneMinLoadAverage = 0.0
 double fiveMinLoadAverage = 0.0
 double fifteenMinLoadAverage = 0.0
}

MemSwapUsageSampler.java

Collect information on memory and swap space.

entity MemSwapUsageRecord {
 long timestamp = 0
 string hostname = ""
 long memTotal = 0
 long memUsed = 0
 long memFree = 0
 long swapTotal = 0
 long swapUsed = 0
 long swapFree = 0
}

NetworkUtilizationSampler.java

entity NetworkUtilizationRecord {
 long timestamp = 0
 string hostname = ""
 string interfaceName = ""
 long speed = 0
 double txBytesPerSecond = 0.0
 double txCarrierPerSecond = 0.0
 double txCollisionsPerSecond = 0.0
 double txDroppedPerSecond = 0.0
 double txErrorsPerSecond = 0.0
 double txOverrunsPerSecond = 0.0
 double txPacketsPerSecond = 0.0
 double rxBytesPerSecond = 0.0
 double rxDroppedPerSecond = 0.0
 double rxErrorsPerSecond = 0.0
 double rxFramePerSecond = 0.0
 double rxOverrunsPerSecond = 0.0
 double rxPacketsPerSecond = 0.0
}

Controlling at Runtime

JMX MBean Access to MonitoringController

The MonitoringController’s interface methods can
be accessed as a JMX MBean. For example, this allows to control the
monitoring state using the methods described in Java Monitoring Controller.
As a JMX-compliant graphical client that is included in the JDK,
jconsole is probably the easiest way to get started. Just keep in
mind to add Kieker to the classpath when calling jconsole so
that the MBean works correctly. The Figure below
shows two screenshots of the MBean access using jconsole.

[image: ../../_images/jmxbean-monitoringcontroller-attributes.png]

Attributes

[image: ../../_images/jmxbean-monitoringcontroller-operations.png]

Operations

Screenshots of the jconsole JMX client accessing the
MonitoringController’s attributes and operations via the MBean
interface.

In order to enable JMX MBean access to the MonitoringController,
the corresponding configuration properties must be set to true
(listing below). The \monitoringPropertiesFile includes additional
JMX-related configuration properties.

Whether any JMX functionality is available
kieker.monitoring.jmx=true
...

Enable/Disable the MonitoringController MBean
kieker.monitoring.jmx.MonitoringController=true
...

For remote access to the server, set kieker.monitoring.jmx.remote=true.
In this case it is recommended to set com.sun.management.jmxremote.authenticate=true as well.
More information can be found on Oracle’s JMX Technology Home Page
<https://www.oracle.com/java/technologies/javase/javamanagement.html>.

Collector - Kieker Data Bridge

Created by Reiner Jung, last modified on Apr 23, 2020

There are two bridges available in Kieker. The new version is called
Collector and the old deprecated one is called Kieker Data
Bridge (KDB). This is the documentation for the new Collector. For
the old KDB please refer to its usage message for help.

The Collector supports any ISourceCompositeStage compatible event
source provided by Kieker tools. As sinks, the collector supports all
Kieker writers based on the DataSinkStage from Kieker. The
Collector is configured via a configuration file. The configuration
file consists of three parts one for basic Kieker settings, one for the
source and one for the sink.

Currently supported event sources (readers):

	Receive Events via TCP from Multiple Sources (MultipleConnectionTcpSourceCompositeStage)

	Receive Events from Log Files

	Receive Events via HTTP/JSON (RestServiceCompositeStage)

	Short

	Long Option

	Required

	Description

	-c

	–configuration

	true

	Configuration file

Example configurations snippets

The following snippets can be combined to configure the collector
application. A complete configuration must contain one general settings
block, one input configuration and one output configuration.

General setup parameter for Kieker.

Kieker settings

The name of the Kieker instance.
kieker.monitoring.name=KIEKER

Auto detect hostname for the writer
kieker.monitoring.hostname=

Output metadata record
kieker.monitoring.metadata=true

Receive data via TCP (binary encoding). This can be used to receive binary
logging data from Kieker in Java and C/C++/Fortran.

TCP servcer for multiple connections

kieker.tools.source=kieker.tools.source.MultipleConnectionTcpSourceCompositeStage
kieker.tools.source.MultipleConnectionTcpSourceCompositeStage.port=9876
kieker.tools.source.MultipleConnectionTcpSourceCompositeStage.capacity=8192

Read another Kieker log. This can be useful to inspect binary logs,
replay logs, make text based logs more compact and even compress them
in the process.

File reader

kieker.tools.source=kieker.tools.source.LogsReaderCompositeStage
kieker.tools.source.LogsReaderCompositeStage.logDirectories=$INPUT_DIR
Buffer size
kieker.tools.source.LogsReaderCompositeStage.bufferSize = 8192

Define output

Data sink stage (FileWriter)
kieker.monitoring.writer=kieker.monitoring.writer.filesystem.FileWriter

FileWriter settings
output path
kieker.monitoring.writer.filesystem.FileWriter.customStoragePath=$OUTPUT_DATA_DIR/
kieker.monitoring.writer.filesystem.FileWriter.charsetName=UTF-8

Number of entries per file
kieker.monitoring.writer.filesystem.FileWriter.maxEntriesInFile=25000

Limit of the log file size; -1 no limit
kieker.monitoring.writer.filesystem.FileWriter.maxLogSize=-1

Limit number of log files; -1 no limit
kieker.monitoring.writer.filesystem.FileWriter.maxLogFiles=-1

Map files are written as text files
kieker.monitoring.writer.filesystem.FileWriter.mapFileHandler=kieker.monitoring.writer.filesystem.TextMapFileHandler

Flush map file after each record
kieker.monitoring.writer.filesystem.TextMapFileHandler.flush=true

Do not compress the map file
kieker.monitoring.writer.filesystem.TextMapFileHandler.compression=kieker.monitoring.writer.compression.NoneCompressionFilter

Log file pool handler
kieker.monitoring.writer.filesystem.FileWriter.logFilePoolHandler=kieker.monitoring.writer.filesystem.RotatingLogFilePoolHandler

Text log for record data
kieker.monitoring.writer.filesystem.FileWriter.logStreamHandler=kieker.monitoring.writer.filesystem.TextLogStreamHandler

Do not compress the log file
kieker.monitoring.writer.filesystem.TextLogStreamHandler.compression=kieker.monitoring.writer.compression.NoneCompressionFilter

Flush log data after every record
kieker.monitoring.writer.filesystem.FileWriter.flush=true

buffer size. The log buffer size must be big enough to hold the biggest record
kieker.monitoring.writer.filesystem.FileWriter.bufferSize=81920

Instead of generating text log files, you may use the
BinaryLogStreamHandler to produce binary output. Also can specify a
compression algorithm for the log and map files, or use a totally
different Kieker writer. For more details on the writer see architecture-java-file-writer.

Convert Logging Timestamps

The script converts Kieker.Monitoring logging timestamps, representing
the number of nanoseconds since 1 Jan 1970 00:00 UTC, to a
human-readable textual representation in the UTC and local timezones.

Usage

kieker.tools.loggingTimestampConverter.LoggingTimestampConverterTool
[−d] [−h] [−t <timestamp1 … timestampN>] [−v]

	−d

	−−debug

	false

	prints additional debug information

	−h

	−−help

	false

	prints the usage information for the tool , including available options

	−t

	−−timestamps <timestamp1 … timestampN>

	
	List of timestamps (UTC timezone) to convert

	−v

	−−verbose

	false

	verbosely prints additional information

Example

The following listing shows the command to convert two logging
timestamps as well as the resulting output.

convert-logging-timestamp --timestamps 1283156545581511026 1283156546127117246

1283156545581511026: Mo, 30 Aug 2010 08:22:25 +0000 (UTC) (Mo, 30 Aug 2010 10:22:25 +0200 (local time))
1283156546127117246: Mo, 30 Aug 2010 08:22:26 +0000 (UTC) (Mo, 30 Aug 2010 10:22:26 +0200 (local time))

Listing A.1: Execution under UNIX-like systems

convert-logging-timestamp.bat --timestamps 1283156545581511026 1283156546127117246

1283156545581511026: Mo, 30 Aug 2010 08:22:25 +0000 (UTC) (Mo, 30 Aug 2010 10:22:25 +0200 (local time))
1283156546127117246: Mo, 30 Aug 2010 08:22:26 +0000 (UTC) (Mo, 30 Aug 2010 10:22:26 +0200 (local time))

Listing A.2: Execution under Windows

Dot-Pic File Converter

Converts each .dot and .pic file, e.g., diagrams generated by
Kieker.TraceAnalysis, located in a directory into desired graphic output
formats. This scripts simply calls the Graphviz and PlotUtils tools dot
and pic2plot.

Usage

Example: dotPic−fileConverter .bat C:\Temp pdf png ps

Example

The following command converts each .dot and .pic file located in the
directory out/to files in .pdf and .png format:

dotPic-fileConverter.sh out/ pdf png

Listing A.7: Execution under UNIX-like systems

dotPic-fileConverter.bat out\ pdf png

Listing A.8: Execution under Windows

Instrumentation Record Language

The Kieker Instrumentation Record Language (IRL) can be used
to define new Kieker records also called (monitoring) events.

Language Features

Language Syntax

Generating Records

	Commandline

	Using Eclipse

Kieker Data Bridge

Note

The Kieker Data Bridge is deprecated. Use instead the collector.

The Kieker Data Bridge (KDB) is designed to support different sources of
monitoring records and to be embeddable in other tools such as Eclipse.
In general the KDB receives records online through a connector, converts
them to Kieker IMonitoringRecords and serializes them with a Kieker
writer.

Architecture

The architecture of the KDB comprises the ServiceContainer and various
connectors implementing the IServiceConnector interface.

The IServiceConnector interface has three methods

	initialize() which initializes a remote connection

	close() which terminates the connection

	deserializeNextRecord() which receives one new record

The initialize() method may block until the connection is established or
an error occurs. However, it can also be implemented in a non-blocking
way. The deserializeNextRecord() method must be blocking until a record
is received, an error occurs, or the connection is terminated.

The ServiceContainer comprises of a constructor and six service methods.
The constructor requires a Kieker Configuration, a connector and a
respawn flag. The latter flag is a debatable construct, but is allows to
trigger reconnects for simple connectors.

CLIServerMain

The KDB comes with a command line server including the bridge with a
wide set of parameters:

usage: cli-kieker-service [-c <configuration>] [-d] [-h <hostname>] -L

<paths> [-l <jms-url>] -m <map-file> [-p <number>] [-s] -t <type>

[-u <username>] [-v <arg>] [-w <password>]

–c,–configuration <configuration>

kieker configuration file

–d,–daemon

detach from console; TCP server allows multiple connections

–h,–host <hostname>

connect to server named <hostname>

–L,–libraries <paths>

List of library paths separated by :

–l,–url <jms-url>

URL for JMS server

–m,–map <map-file>

Class name to id (integer or string) mapping

–p,–port <number>

listen at port (tcp-server or jms-embedded) or connect to port

(tcp-client)

–s,–stats

output performance statistics

–t,–type <type>

select the service type: tcp-client, tcp-server,

tcp-single-server, jms-client, jms-embedded

–u,–user <username>

user name for a JMS service

–v,–verbose <arg>

output processing information

–w,–password <password>

password for a JMS service

In addition the connectors can be initialized via a Configuration object
determined by the -c option.

Connectors

The KDB supports five different connectors which are described here
briefly. The selection of the connector can by done via the –type
property on command line or via a Kieker-configuration file entry:

kieker.tools.bridge.connector=FullQualifiedClassName

TCPClientConnector

Connects to a remote site specified by a host name and a port. The
connector reads then binary data and reconstructs records. The two
configuration properties can either be specified as a command line
option or via the Kieker-configuration file by:

kieker.tools.bridge.connector.tcp.TCPClientConnector.hostname=HOSTNAME

kieker.tools.bridge.connector.tcp.TCPClientConnector.port=PORT

TCPSingleServerConnector

Sets up a server for a single connection in initialize() and waits for a
connection. After the connections is established the method terminates,
and the ServiceContainer calls repeatedly the deserializeNextRecord
method. The connector requires a port number for its port. The
configuration property can either be specified by a command line option
or via the Kieker-configuration file by:

kieker.tools.bridge.connector.tcp.TCPSingleServerConnector.port=PORT

TCPMultiServerConnector

Sets up a server for multiple connection in initialize(). The method
starts a port listener thread and exits immediately afterwards. If a
connection is established from a client, a connection listener thread is
started to handle the incoming data and create records. Completed
records are transferred into a queue, which emptied by repeated calles
to the deserializeNextRecord method. The connector requires a port
number for its port. The configuration property can either be specified
by a command line option or via the Kieker-configuration file by:

kieker.tools.bridge.connector.tcp.TCPMultiServerConnector.port=PORT

JMSClientConnector

The JMSClientConnector supports text and binary messages.

kieker.tools.bridge.connector.jms.JMSClientConnector.username=USERNAME

kieker.tools.bridge.connector.jms.JMSClientConnector.password=PASSWORD

kieker.tools.bridge.connector.jms.JMSClientConnector.uri=ServiceURI

JMSEmbeddedConnector

the JMSEmbeddedConnector supports text and binary messages. Its primary
difference to the normal JMSClientConnector is its integrated JMS
service. However, the connector is dysfunctional at the moment.

Network Transport Format

At present the connectors of the KDB use either a binary or a textual
format. It is allowed to extend this by other formats if necessary.

Binary Format

The binary format uses network byte order (big-endian). Each record
starts with an initial record id coded in an integer (int32). Negative
numbers are reserved for system commands, while all IMonitoringRecord
type use positive user defined values (including 0). A record may
comprise various fields, which are encoded in big-endian for integer
values (byte, short, integer, long, char) and IEEE encoding for float
and double. Strings are represented by an integer (int32) defining the
length and a sequence of bytes representing the string.

Text Format

The text format encodes all properties in one string. Values are
separated by a semicolon (;). The record id is stored as the first value
in such string.

0;1253453456345;1523453256345;public myMethod()

This example shows a record with three values and a record id (0) as
prefix value.

Connector Interface

The implementation of new connectors must adhere the IServiceConnector
interface providing methods to initialize, transmit and close the
connector. Furthermore it should inherit the AbstractConnector class for
basic setup. Finally each connector must be annotated with the
ConnectorProperty annotation to specify properties used in the command
line version or the Eclipse plugin.

@ConnectorProperty(cmdName = “my-service”, name = “My Service Demo
Connector”, description = “example connector for documentation.”)

public class MyServiceConnector extends AbstractConnector {

As the connector uses the normal Kieker Configuration object for
configuration, the different settings require Configuration property
names and should use private properties in the class to hold the values.

/** Property name for the host name of the record source. */

public static final String PROPERTY =
MyServiceConnector.class.getCanonicalName() + “.property”;

private String property;

In the constructor, first the configuration is passed to the super
constructor and then the properties are setup.

/** * Create a MyServiceConnector. * * @param configuration *
Kieker configuration including setup for connectors * * @param
lookupEntityMap * IMonitoringRecord constructor and TYPES-array to id
map */

public MyServiceConnector(final Configuration configuration, final
ConcurrentMap<Integer, LookupEntity> lookupEntityMap) {

super(configuration, lookupEntityMap);

this.property =
this.configuration.getStringProperty(MyServiceConnector.PROPERTY);

}

The remaining connector comprises the three methods from the
IServiceConnector interface. The methods all may throw a
ConnectorDataTransmissionException indicating that some error occurred.
The real exception is added to the ConnectorDataTransmissionException on
creation in the connector. This allows to use a defined exception type
instead of Exception.

The initialize() method can be implemented blocking or non blocking. It
throws a ConnectorDataTransmissionException if no connection could be
established.

/** * Create the connection … * * @throws
ConnectorDataTransmissionException * if the initialization fails */

public void initialize() throws ConnectorDataTransmissionException {

// initialization code, establish connection }

The close() method must terminate the connection. If queues must be
freed, then this routine has to do it. On error the method can produce a
ConnectorDataTransmissionException exception.

/** * Closes the connection … * * @throws
ConnectorDataTransmissionException * if an IOException occurs during
the close operation */

public void close() throws ConnectorDataTransmissionException {

// terminate connection }

The deserializeNextRecord() method blocks until is able to read one new
record. If you want to implement a multi-record transmit channel, then
can do so, but must store the results in a buffer, which is then read on
every call of deserializeNextRecord() returning one received record
after another.

/** * De-serialize an object reading from the input stream. * *
@return the de-serialized IMonitoringRecord object or null if the stream
was terminated by the client. * * @throws
ConnectorDataTransmissionException * when a record is received that ID
is unknown or the deserialization fails * @throws
ConnectorEndOfDataException * when the other end hung up or the data
stream ends of another reason */

public IMonitoringRecord deserializeNextRecord() throws
ConnectorDataTransmissionException, ConnectorEndOfDataException {

// read structure ID try {

final Integer id = … ; // get id for the record final LookupEntity
recordProperty = this.lookupEntityMap.get(id);

if (recordProperty != null) {

final Object[] values = new
Object[recordProperty.getParameterTypes().length];

// process and or receive record data // - fill the values array. This
could also be handled differently. // return new record return
recordProperty.getConstructor().newInstance(values);

} else {

throw new ConnectorDataTransmissionException(“Record type ” + id + ” is
not registered.”);

}

} catch (… e) {

throw new ConnectorEndOfDataException(“End of stream”, e);

} …

}

Log Replayer

Replays filesystem monitoring logs created by Kieker.Monitoring. Example
applications are:

	Merging multiple directories containing monitoring data into a single
output directory.

	Importing a filesystem monitoring log to another monitoring log,
e.g., a database. Therefore, an appropriate Kieker. Monitoring
configuration file must be passed to the script.

	Replaying a recorded filesystem monitoring log in real-time (or
faster/slower) in order to simulate incoming monitoring data from a
running system, e.g., via JMS.

Usage

usage: kieker.tools.logReplayer.FilesystemLogReplayerStarter [-a
<factor>] [-c <pathtomonitoring.properties>] [-d] [-h] [-i <dir1
…dirN>]

[–ignore-records-after-date <yyyyMMdd-HHmmss>]
[–ignore-records-before-date <yyyyMMdd-HHmmss>] [-k <true|false>]

[-n <num>] [-r <true|false>] [-v]

Example

The following command replays the monitoring testdata included in the
binary release to another directory:

log-replayer --inputdirs
 examples/userguide/ch5–trace-monitoring-aspectj/testdata/kieker-20100830-082225522-UTC
 --keep-logging-timestamps true
 --realtime false

Listing A.3: Execution under UNIX-like systems

log-replayer --inputdirs
 ..\examples\userguide\ch5–trace-monitoring-aspectj\testdata\kieker-20100830-082225522-UTC
 --keep-logging-timestamps true
 --realtime false

Listing A.4: Execution under Windows

Resource Monitor

The resource monitor has not yet been ported to the new APIs.

Usage

ResourceMonitorMain

	Short

	Long Option

	Required

	Description

	-c

	–monitoring.configuration
–interval <INTERVAL>
–interval-unit <UNIT>
–initial-delay <DELAY>
–initial-delay-unit <UNIT>
–duration <DURATION>
–duration-unit <UNIT>

	false
false
false
false
false
false
false

	Configuration to use for the Kieker monitoring instance
Sampling interval
Sampling interval time unit (default: SECONDS)
Initial delay
Initial delay time unit (default: SECONDS)
Monitoring duration
Monitoring duration time unit (default: MINUTES)

Trace Analysis – GUI

UI to control the trace-analysis tool.

Trace Analysis Tool

Calls Kieker.TraceAnalysis to analyze and visualize monitored trace
data.

Usage

	Short

	Long Option

	Required

	Description

	-d

	–debug
–filter-traces

	false

	Prints additional debug information.
Consider only the traces not identified by the list of trace IDs. Defaults to no traces.

	-h

	–help
–ignore-assumed-calls
–ignore-executions-after-date <timestamp>
–ignore-executions-before-date <timestamp>
–ignore-invalid-traces
–include-self-loops

	false
false

	Prints the usage information for the tool, including available options.
If selected, assumed calls are visualized just as regular calls.
Executions ending after this date (UTC timezone) or monitoring timestamp are ignored.
Executions starting before this date (UTC timezone) or monitoring timestamp are ignored.
If selected, the execution aborts on the occurrence of an invalid trace.
If selected, self-loops are included in the visualizations.

	-i

	–inputdirs <dir1,dir2,…,dirN>
–max-trace-duration <duration>

	600000

	Log directories to read data from.
Threshold (in ms) after which incomplete traces become invalid. Defaults to 600,000 (i.e, 10 minutes).

	-p

	–output-filename-prefix

	
	Prefix for output filenames.

	-o

	–outputdir
–plot-Aggregated-Assembly-Call-Tree
–plot-Aggregated-Deployment-Call-Tree
–plot-Assembly-Component-Dependency-Graph <none|*>
–plot-Assembly-Operation-Dependency-Graph <none|*>
–plot-Assembly-Sequence-Diagrams
–plot-Call-Trees
–plot-Container-Dependency-Graph
–plot-Deployment-Component-Dependency-Graph <none|*>
–plot-Deployment-Operation-Dependency-Graph <none|*>
–plot-Deployment-Sequence-Diagrams
–print-Assembly-Equivalence-Classes
–print-Deployment-Equivalence-Classes
–print-Execution-Traces
–print-Message-Traces
–print-System-Model
–print-invalid-Execution-Traces
–repair-event-based-traces
–select-traces
–short-labels
–traceColoring

	false
false

false
false
false

false
false
false
false
false
false
false
false

false

	Directory for the generated file(s).
Generate and store an aggregated assembly-level call tree (.dot)
Generate and store an aggregated deployment-level call tree (.dot)
Generate and store an assembly-level component dependency graph (.dot)
Generate and store an assembly-level operation dependency graph (.dot)
Generate and store assembly-level sequence diagrams (.pic)
Generate and store call trees for the selected traces (.dot)
Generate and store a container dependency graph (.dot file)
Generate and store a deployment-level component dependency graph (.dot)
Generate and store a deployment-level operation dependency graph (.dot)
Generate and store deployment-level sequence diagrams (.pic)
Output an overview about the assembly-level trace equivalence classes
Output an overview about the deployment-level trace equivalence classes
Save execution trace representations of valid traces (.txt)
Save message trace representations of valid traces (.txt)
Save a representation of the internal system model (.html)
Save a execution trace representations of invalid trace artifacts (.txt)
If selected, BeforeEvents with missing AfterEvents e.g. because of software crash will be repaired.
Consider only the traces identified by the list of trace IDs. Defaults to all traces.
If selected, abbreviated labels (e.g., package names) are used in the visualizations.
Color traces according to the given color map given as a properties file (key: trace ID, value: color in hex format, e.g., 0xff0000 for red; use trace ID ‘default’ to specify the default color)

	-v

	–verbose

	false

	Verbosely prints additional information

Example

The following commands generate a deployment-level operation dependency
graph and convert it to pdf format:

trace-analysis
 --inputdirs
 examples/userguide/ch5–trace-monitoring-aspectj/testdata/kieker-20100830-082225522-UTC
 --outputdir .
 --plot-Deployment-Operation-Dependency-Graph

dot -T pdf deploymentOperationDependencyGraph.dot > deploymentOperationDependencyGraph.pdf

Listing A.5: Execution under UNIX-like systems

trace-analysis.bat
 --inputdirs
 ..\examples\userguide\ch5–trace-monitoring-aspectj\testdata\kieker-20100830-082225522-UTC
 --outputdir .
 --plot-Deployment-Operation-Dependency-Graph

dot -T pdf deploymentOperationDependencyGraph.dot > deploymentOperationDependencyGraph.pdf

Listing A.6: Execution under Windows

WebGUI

1 Introduction

The purpose of this document is to provide a technical documentation of
the Kieker.WebGUI project. It is written mostly for other developers. It
gives not only an overview over the whole project, but details the used
technologies, components, relationships and single design decisions as
well. This document is not designed as an user guide or user manual.

2 Project Overview

2.1 Purpose and Target of the Project

The Kieker.WebGUI is a graphical user interface to assemble, control,
and observe an analysis instance of the Kieker framework. For reasons of
performance and administrability the tool is a web application. It can
be used in a common browser by multiple users at a time.

2.2 Technologies and Dependencies

As the tool is a web application, it is developed as a JavaEE
application using JavaServer Faces for the most part. For advanced
visual components and themes the open source component framework
Primefaces [http://primefaces.org] is used.
Spring [http://www.springsource.org/] is
used as a dependency framework. Spring security [http://static.springsource.org/spring-security/site/index.html]
is the security framework to check authentications and authorizations.
In order to provide human-readable URLs, the URL Rewrite Filter
PrettyFaces [http://ocpsoft.org/prettyfaces/]
is used. The Kieler layout algorithms are used to layout graphs within
the application. Furthermore the GUI has naturally a direct dependency
to the Kieker framework itself. The used build management tool is Apache
Maven [http://maven.apache.org].

2.3 Licensing Issues

The project is licensed under the Apache 2 License. Therefore all other
dependencies have to be compatible with this license. All dependencies
should furthermore have a corresponding .LICENSE file in the lib folder.

3 Design Overview

The Kieker.WebGUI is a typical multi layered web application. The
architecture can be seen in the following figure.

[image: ../_images/kieker-webgui-architecture.png]

3.1 Web Layer

3.1.1 Web Pages

The web paces within the application have a similar structure. Therefore
we use a hierarchical template structure (within the template
directory) for this pages. Each of the pages has also an own css file
(in the css’ directory). Additional dialogs for the pages can be found
in the dialogs’ directory. Special pages only available for
administrators should be in the pages/admin directory.

3.1.1.1 LoginPage.xhtml

The page to log into the system. The technical part behind the login is
performed by Spring Security. If the login succeeds, the user is
directly forwarded to the project overview page. If it fails, the user
is redirected to the login page with an additional info about the fail.

3.1.1.2 AccessDeniedPage.xhtml

A mostly empty page. It displays only a warning image and tells the user
that he doesn’t have the necessary rights to enter the page.

3.1.1.3 AnalysisEditorPage.xhtml

3.1.1.4 CockpitEditorPage.xhtml

3.1.1.5 CockpitPage.xhtml

3.1.1.6 ControllerPage.xhtml

3.1.1.7 ProjectOverviewPage.xhtml

3.1.2 Beans and Converter

3.1.2.1 Application Scoped

ProjectsBean

This bean provides and manages a list with the application wide
available projects. It provides furthermore methods to manage (add,
delete e.g.) projects from the JSF context.

ThemeSwitcherBean

This bean simply provides a map containing all available look and feels
(themes) for the application. The actual themes are injected via Spring.

3.1.2.2 Request Scoped

StringBean

This bean is only responsible for saving one string during a request
(e.g. the name of a new project). But this bean also provides some
simple String related methods for places where a bean is necessary.

UploadFileBean

A simple bean which contains a file to be uploaded during a request.

NewUserBean

This is a simple container to store the information needed to create a
new user during a request.

3.1.2.3 Session Scoped

UserBean

3.1.2.4 View Scoped

As the view scope is technically not available in the Spring managed
bean, it was necessary to manually implement this one (see class
ViewScope).

CurrentAnalysisEditorBean

Prototype Pattern

The bean uses the prototype pattern to create new components for the
model. The available components are modified to provide a copy method.
The copy method delivers a new copy of a component with all properties -
but without connected components.

CurrentAnalysisEditorGraphBean

3.2 Service Layer

The service layer uses interfaces (marked yellow in the figure) to
abstract the actual implementation.

User Service

The user service is merely a delegator. It passes the method calls
directly to the user DAO at the lower layer.

Project Service

This service delegates all tasks about the projects (create projects,
start analysis e.g.) to the DAO at the lower layer and the analysis
controller. It manages the synchronization between the projects by using
two maps with lock objects.

Graph Layout Service

The graph layout service provides just one method to layout a given
graph. The most methods within the layout service are just responsible
for converting the given nodes and edges into a valid format. The actual
layouting is performed by the Kieler layout algorithms.

3.3 Persistence Layer

3.3.1 User DAO

The current implementation of the user data access object uses Apache
Derby as an embedded user database. It provides methods to add, edit,
and remove users within the system. Due to the usage of an interface it
is of course possible to replace this DAO.

3.3.2 Project DAO

The current implementation of the project data access objects used the
file system to store and load projects. Due to the usage of an interface
it is of course possible to replace this DAO.

3.3.2.1 Class Loader Handling

As it is possible to add and remove project libraries during runtime, it
is necessary to manage the resulting class loaders correctly. The
project DAO creates a new temporary directory for every new class
loader. The project libraries are copied into this folder and a new
class loader is created. The DAO uses a weak map to observe the existing
class loaders. If a class loader has been closed and disposed, the
remaining temporary files are being removed.

However, it was necessary to implement a special class loader
(CloseableURLClassLoader) which can be closed. A closeable URL class
loader is not available in Java 1.6.

3.4 Common and Domain Objects

This is a vertical layer at many classes within this layer are used
through all other layers. Those are, for example, exception and domain
classes. Some more specific classes will be explained in more detail in
the following.

3.4.1 Plugin Decorators

3.4.2 ViewScope

This class is a manual implementation of JSF’s view scope. This is
necessary, as Spring doesn’t support the view scope directly.

4 Configuration and Properties Files

4.1 Spring

As a lot of components are created and configured via Spring, the
configuration is split into seven different files. The files can be
found in \srcmainwebappWEB-INF

4.1.1 Kieker

This configuration file has the name spring-kieker-config.xml. It is
normally used only for test purposes and can be used to easily weave
Kieker monitoring code into the WebGUI. For more details look into the
Kieker user guide.

4.1.2 Quartz

This configuration file has the name spring-quartz-config.xml. It is
used to configure the quartz time scheduler used for updating the
display components. This is necessary for the analysis cockpit.

4.1.3 Spring Security

The configuration for the security part of the WebGUI is stored in the
two files spring-security-config.xml and spring-security-taglib.xml.
The second file maps the JSF tags to the correct methods of the spring
framework. The other file configures which urls have to be intercepted
and which pages can be accessed with the different roles. Modify those
configuration files with care.

4.1.4 Database

The configuration for the database is stored in the file
spring-database-config.xml. It contains the (spring managed) data
source, the transaction manager, and the default available entries.
Those make sure that the tables and some default users are created.

4.2 Pretty Faces

The configuration file for Pretty Faces has the name
pretty-config.xml. It allows to use short and nice looking URLs
instead of long and complicated ones. Modify this configuration file
with care, as it can influence the security part of the application.

4.3 Maven

Maven is used as a build tool for the project. The main configuration
can be found in the pom.xml. More configuration files can be found in
\configdescriptors.

The files in the latter directory are responsible for packing the
correct files into the bin- and src-archives.

All further dependencies and plugins are configured in pom.xml.

4.4 Log4J

The configuration file for Log4J is stored under
\srcmainresourceslog4j.properties. The current implementation
avoids a console output and uses instead a single log file. Only
messages with level WARN or higher are logged.

4.5 JSF

4.6 Web.xml

4.7 Localization

The localized messages and texts are stored in the files within
\srcmainresourceslang. Currently only German and English are
supported.

4.8 Static Tests

We use Findbugs, Checkstyle and PMD to test the code during the package
phase. The tools are configured in the files under
\configquality-config.

5 Conventions

5.1 Security Annotations

Security annotations should be used on the interface level.

5.2 Transaction Annotations

Transaction annotations should be used on the implementation level. An
implementation of the IUserDAO interface for example, is responsible
for a valid transaction management.

5.3 Exception and Log Handling

Exceptions should be caught, refined, and thrown if necessary. However,
the methods on the web level should not throw any exceptions.

Every exception that is not thrown, should be logged.

201403-ICPE-Dublin

Information

The 2-hour tutorial was held on March 23, 2014 at the ` 5th ACM/SPEC
International Conference on Performance
Engineering <http://icpe2014.ipd.kit.edu/>`_ in Dublin, Irland.

Presenters:

	 Andre van Hoorn, University of Stuttgart, Germany

	 Nils Ehmke, Kiel University, Germany

For this tutorial, Kieker version 1.8 has been used.

Material provided outside this Wiki page:

	Kieker and Kieker.WebGUI release archives (binary and doc):
http://kieker-monitoring.net/download/

	Kieker user guide:
kieker-1.8_userguide.pdf [http://eprints.uni-kiel.de/16537/37/kieker-1.8_userguide.pdf]

	Presentation slides:

	Original slides with overlays:
20140323-ICPE-Tutorial-slides.pdf [http://eprints.uni-kiel.de/23928/2/20140323-ICPE-Tutorial-slides.pdf]

	Handout versions:
20140323-ICPE-Tutorial-handout.pdf [http://eprints.uni-kiel.de/23928/1/20140323-ICPE-Tutorial-handout.pdf]

Schedule

	14:30 Introduction and Overview of Approach (avh)

	14:45 Interactive: Quick Start (nie)

	15:00 Intro (cont’d) (avh)

	15:05 Use Cases in Research and Practice (avh)

	15:20 Kieker’s Monitoring Component (avh)

	15:35 Kieker’s Analysis Component & WebGUI (nie)

	15:50 Interactive: Java EE Monitoring (avh)

	16:05 A Detailed Look at Selected Use Cases (nie/avh)

	16:30 End

Instructions for the Interactive Parts

It makes sense to put the following parts to separate pages.

Preparation

	Unzip source and binary release archives

20140323-ICPE-Tutorial/kieker-1.8-release <master>* $ unzip
kieker-1.8_binaries.zip && mv kieker-1.8 kieker-1.8-bin

20140323-ICPE-Tutorial/kieker-1.8-release <master>* $ unzip
kieker-1.8_sources.zip && mv kieker-1.8 kieker-1.8-src

	Start Eclipse with new/empty workspace
20140323-ICPE-Tutorial/workspace-avh

Quick Start (nie)

	Preparation:

	Create shortlink to directory 20140323-ICPE-Tutorial in Konqueror

	Create new workspace in eclipse, located in
20140323-ICPE-Tutorial/eclipse-workspace

	Download -> s. Folie

	Files to be found in dir:
20140323-ICPE-Tutorial/download-kieker-1.8/

	User Guide vorstellen

	Extract kieker-1.8_binaries.zip to 20140323-ICPE-Tutorial/

	… and rename to kieker-1.8-binaries

	Presentation of Release Archive (Binary, Source, User Guide)

	Bookstore-Beispiel mit AspectJ aus dem User Guide

	Bookstore ohne Instrumentierung

	Import example project ch2–bookstore-application into
workspace

	Bookstore zunächst kurz vorstellen

	Starten ohne Instrumentierung: BookstoreStarter.java -> run as
-> Java application

	Instrumentierung mit AspectJ (Vollinstrumentierung ohne
Annotationen)

	Create directory lib/

	Copy kieker-1.8_aspectj.jar

	Create directory src/META-INF

	Copy aop.example.xml to src/META-INF/aop.xml

	Select full aspect and include “*”

	run with -javaagent:lib/kieker-1.8_aspectj.jar

	Filesystem-Log

	Show console output

	Show .map and .dat file in Konqueror

	TraceAnalyse mit Visualisierung

	Add kieker-1.8_emf.jar to build path

	Add commons-cli-1.2.jar to build path

	Run *TraceAnalysisTool* (run kieker-1.8_emf.jar as “Java
Application”)

	Run configuration with program arguments:

	-i
/tmp/kieker-20121121-150448579-UTC-pc-vanhoorn-KIEKER-SINGLETON

	–plot-Deployment-Operation-Dependency-Graph

	-o .

	Show output

	HTML-Systemmodell

	Abhaengigkeitsgraph (Deployment-Operation + ggf. mehr)

	Call-Tree-Varianten

	Sequenzdiagramm -> “if possible”

Monitoring (avh)

	Import Kieker source project
(20140323-ICPE-Tutorial/kieker-1.8-release/kieker-1.8-src/) into the
workspace (“Import…”->”Import existing project into workspace”)

	Show example record CPUUtilizationRecord

	Show example probe CPUsDetailedPercSampler

Analysis (nie)

	…

WebGUI (nie)

	Mem/swap example without CPU (to be prepared)

	Open analysis editor

	Explain example

	Add CPU filter

	Start analysis

	Cockpit

JavaEE (avh)

Quick start

	Change dir to prepared Jetty
20140323-ICPE-Tutorial/kieker-1.8-release/kieker-1.8-bin/examples/JavaEEServletContainerExample/jetty-hightide-jpetstore

	Start instrumented JPetStore

jetty-hightide-jpetstore <master>* $ java -jar start.jar

	Explain console output and tail -f on monitoring log

	Access JPetStore http://localhost:8080/jpetstore/ and click around

	Create and show plots

jetty-hightide-jpetstore <master>* $ mkdir plots

jetty-hightide-jpetstore <master>* $../../../bin/trace-analysis.sh
-i
/tmp/kieker-20140319-150803890-UTC-avh-ThinkPad-RSS-KIEKER-EXAMPLE-JAVAEE/
-o plots/ –plot-Deployment-Component-Dependency-Graph –plot-Assembl

y-Component-Dependency-Graph
–plot-Deployment-Operation-Dependency-Graph responseTimes
–plot-Assembly-Operation-Dependency-Graph responseTimes
–print-System-Model

jetty-hightide-jpetstore <master>* $
../../../bin/dotPic-fileConverter.sh plots/ pdf

jetty-hightide-jpetstore <master>* $ acroread plots/*.pdf&

Advanced

	Explain instrumentation (Spring, Servlet)

	Use a custom Kieker configuration:

	Copy META-INF from binary release to JavaEE example

jetty-hightide-jpetstore <master>* $ cp -R ../../../META-INF/ .

	Edit kieker.monitoring.properties:

	hostname=ICPE14-SRV

	jmx=true

	adaptiveMonitoring.enabled=true

	kieker.monitoring.writer.filesystem.AsyncFsWriter.customStoragePath=kieker-logs

	Create output dir

jetty-hightide-jpetstore <master>* $ mkdir kieker-logs

	Activate configuration in start.ini

	–exec

	-Dkieker.monitoring.configuration=META-INF/kieker.monitoring.properties

	Sigar Sampler for CPU and MEM

	Copy Sigar Jar and {dll|so|…} to webapps/WEB-INF/lib/

jetty-hightide-jpetstore <master> $ cp
../../../lib/sigar-1.6.4.jar ../../../lib/sigar-native-libs/*
webapps/jpetstore/WEB-INF/lib/

	Activate
kieker.monitoring.probe.servlet.CPUMemUsageServletContextListener
in webapps/jpetstore/WEB-INF/web.xml

	Restart Jetty

	Click around a bit

	Show log

	Attach to Monitoring Controller via JConsole:

/usr/lib/jvm/sun-jdk1.6.0_38/bin/jconsole &

	toString

	Demonstrate adaptive Monitoring

	Disable public void
kieker.monitoring.probe.servlet.SessionAndTraceRegistrationFilter.doFilter(javax.servlet.ServletRequest,
javax.servlet.ServletResponse, javax.servlet.FilterChain)

	enable/disable/terminate

	Restart Jetty

	Click around

Bonus:

	Sigar analysis from User Guide

	Fix project

	Add kieker.jar and sigar.jar to build path

	run

	AspectJ-based instrumentation

201405-University-Pavia

Information

The tutorial was held on May 21, 2014 as a 3-hour guest lecture in the
` course “Enterprise Digital
Infrastructure” <http://eecs.unipv.it/degrees/computer-engineering/enterprise-digital-infrastructure/>`_,
` University of Pavia <http://eecs.unipv.it/>`_, Pavia, Italy.

Title: Dynamic Analysis of Software Systems with Kieker: A Hands-On
Lecture

Presenter:

	 Andre van Hoorn, University of Stuttgart, Germany

For this tutorial, Kieker version 1.9 has been used.

Material provided outside this Wiki page:

	Kieker and Kieker.WebGUI release archives (binary and doc):
http://kieker-monitoring.net/download/

	Kieker user guide:
` kieker-1.9_userguide.pdf <http://eprints.uni-kiel.de/16537/49/kieker-1.9_userguide.pdf>`_

	Presentation slides:

	Original slides with overlays:
` 20140521-KiekerLectureUPavia-slides.pdf <http://eprints.uni-kiel.de/24622/2/20140521-KiekerLectureUPavia-slides.pdf>`_

	Handout versions:
` 20140521-KiekerLectureUPavia-handout.pdf <http://eprints.uni-kiel.de/24622/1/20140521-KiekerLectureUPavia-handout.pdf>`_

Schedule

	09:30 Introduction and Overview of Approach

	09:50 Interactive: Quick Start

	10:10 Introduction and Overview of Approach (cont’d)

	10:15 Use Cases in Research and Practice

	10:35 Kieker’s Monitoring Component

	10:50 Coffee Break

	11:10 Kieker’s Monitoring Component (cont’d)

	11:20 Kieker’s Analysis Component & WebGUI

	11:40 Interactive: Java EE Monitoring

	12:00 A Detailed Look at Selected Use Cases

	12:30 End

Instructions for the Interactive Parts

Preparation

	Unzip source and binary release archives

201405-KiekerLectureUPavia $ l kieker-1.9-release/

kieker-1.9-bin/ kieker-1.9_binaries.zip kieker-1.9_sources.zip
kieker-1.9-src/ kieker-1.9_userguide.pdf kieker-webgui-1.9_binaries/
kieker-webgui-1.9_binaries.zip

	Start Eclipse with new/empty workspace
201405-KiekerLectureUPavia/eclipse-workspace/

Quick Start

	Presentation of Release Archive (Binary, Source, User Guide)

	Import the following examples (to be found in examples/userguide/ of
the binary release) into Eclipse:

	ch2–bookstore-application/

	ch3-4–custom-components/

	ch5–trace-monitoring-aspectj/

	Bookstore example with AspectJ from the user guide

	Bookstore without Instrumentation (ch2–bookstore-application)

	Briefly present Bookstore application

	Start without instrumentation: BookstoreStarter.java -> run as
-> Java application

	Instrumentation with AspectJ (Full instrumentation without
annotations)

	(Partially workaround due to
#1292 [http://kieker.uni-kiel.de/trac/ticket/1292])

	Copy lib/ folder (including kieker-1.9_aspectj.jar) from
ch5–trace-monitoring-aspectj/ to ch2–bookstore-application

	Create directory src/META-INF

	Copy aop-full.xml from ch5–trace-monitoring-aspectj/ to
ch2–bookstore-application/src/META-INF/aop.xml

	run with -javaagent:lib/kieker-1.9_aspectj.jar

	Filesystem-Log

	Show console output

	Show .map and .dat file in Konqueror

	Run trace-analysis{-gui}.(sh|bat)

	Convert .dot files to .pdf (e.g., with
convertLoggingTimestamp.{sh|bat})

	Show output

	HTML system model

	Dependency graphs (Deployment-Operation + ggf. mehr)

	Call tree variants

	Sequence diagrams -> “if possible”

Monitoring

	Show example records, e.g.,

	CPUUtilizationRecord

	MyResponseTimeRecord (from ch3-4–custom-components)

	Show example probes, e.g.,

	CPUsDetailedPercSampler

	Manual instrumentation in Bookstore (from
ch3-4–custom-components)

	Show example writer, e.g., MyPipeWriter (from
ch3-4–custom-components)

Analysis

	Show example reader, e.g., MyPipeReader (from
ch3-4–custom-components)

	Show example filters, e.g.,

	MyPipeWriter (from ch3-4–custom-components)

	MyResponseTimeFilter (from ch3-4–custom-components)

	Show how to assemble and start pipes-and-filters configuration, e.g.,
in Starter (from ch3-4–custom-components) -> motivation for WebGUI

WebGUI

	Mem/swap example without CPU (to be prepared)

	Open analysis editor

	Explain example

	Add CPU filter

	Start analysis

	Cockpit

JavaEE

JPetStore and Live Demo (via JMX)

	Change dir to prepared Jetty
201405-KiekerLectureUPavia/kieker-1.9-release/kieker-1.9-bin/examples/JavaEEServletContainerExample/jetty-hightide-jpetstore

	Start instrumented JPetStore

jetty-hightide-jpetstore <master>* $ java -jar start.jar

	Access JPetStore http://localhost:8080/jpetstore/ and click around

	Access live demo http://localhost:8080/demo/

Log to Filesystem and use TraceAnalysis

	Activate file system writer and adaptive monitoring by editing
jetty-hightide-jpetstore/webapps/jpetstore/WEB-INF/classes/META-INF/kieker.monitoring.properties

…

Enable or disable adaptive monitoring.

kieker.monitoring.adaptiveMonitoring.enabled=true

#By comment out the next line, the FSWriter is used. This makes the
demo inoperable.

#kieker.monitoring.writer=kieker.monitoring.writer.jmx.JMXWriter

	Restart Jetty

	Click around a bit

	Show file system monitoring log

	Attach to Monitoring Controller via JConsole:

/usr/lib/jvm/sun-jdk1.6.0_38/bin/jconsole &

	toString

	Demonstrate adaptive Monitoring

	Disable CPU (%CPU) and memory (%MEM_SWAP)

	Disable public void
kieker.monitoring.probe.servlet.SessionAndTraceRegistrationFilter.doFilter(javax.servlet.ServletRequest,
javax.servlet.ServletResponse, javax.servlet.FilterChain)

	Activate *

	enable/disable

	Create and show plots

jetty-hightide-jpetstore <master>* $ mkdir plots

jetty-hightide-jpetstore <master>* $../../../bin/trace-analysis.sh
-i /tmp/kieker-<path-to-log>/ -o plots/
–plot-Deployment-Component-Dependency-Graph –plot-Assembl

y-Component-Dependency-Graph
–plot-Deployment-Operation-Dependency-Graph responseTimes
–plot-Assembly-Operation-Dependency-Graph responseTimes
–print-System-Model

jetty-hightide-jpetstore <master>* $
../../../bin/dotPic-fileConverter.sh plots/ pdf

jetty-hightide-jpetstore <master>* $ acroread plots/*.pdf&

 _images/50-bookstore-woven-project.png
(O /)
[0 < Programme » KikerdCOM » examples » vb6 »_bookstore-waven s [bootstore-.. P

Organisieren v 8y Offnen + Kompatibiltatsdateien Neuer Orcner a e

¢ Favoriten Aspects.vbw
Visual Basic Project Workspace
B Desitop. 172 Bytes

15 Dowloads

Bookstore.exe % Bookstorebp
L T Yo
1000

Biblotheken Bookstorevbw BookstoreStarterbas
Bilder Visual Basic Project Workspace Visual Basic Module
Dokumente 282Bytes 1001 Bytes.

& m Catalog.cls CRM.cls
CLSDate CLSDatei
1 videes s08yes 1007 Btes

Globals bas ICptOpCallls

18 Computer Visusl Basic Module CLs-Date
& Lokaler Datentrager (¢ 109 Bytes 140KB

¥ CD-Laufwerk (D2 Virtt IcptOpExec.cls OpCalllcptr.cls

59 virtual-share (\VBOX: CLS-Datei CLS-Datei
995 Bytes 113K8

G Netzwerk OpBxeclcptr.cls README
CLS-Datei Datei
115KB 208 Bytes

$ Bookstorevbp Andenngscatum: OLOSOI2 1745 Entelldatum: 010820121844
(et GroBe: 112K8

_images/51-immediate-window.png
Bookstore.main: Starting request

_images/08-dll-success.png
3 &Pack - Instalation of Kieker.COM.

Srer=]

Processing
Further setp
11 -
Installed products: m
Froauct : o-Integza CoM

License Version :
Runtime Version :
Licensed to
serial

License Type
Date of Issue

) DiRegisterServer in C:\Program

durchgefhrt.

Copy jintegra librd
1 Datei (en)|

Files\Kiekerd COM\Kiekerd COM.dil erfolgreich

Register jvm at J-Integra
Starc the vircual machine
Register MonitoringController

.

(Msde with 12Psck - itp:izpack org)

_images/09-success.png
¥ &Pack - Instalation of Kieker.COM. (=)

Processing

o
Froauct : o-Integza COM
License Version : 2.11
Runtime Version : 2.1
Licensed to ;SR —
Serial # : R
License Type ————

Date of Tosue : CHNES

Copy jintegra library
1 Datei(en) kopiert.
Register jvm at J-Integra

Starc the vircual machine
Register MonitoringController
FINISHED

(Msde with 12Psck - itp:izpack org)

_images/90-start-uninstaller.png
Organisieren v In Bibliothek aufnchmen v Freigebenfur v Neuer Ordner

> camples -
> B fntegra

bl

@) uninstallerjor

_—T

> MicosoftanayssSenices [
5 i Microsoft ASP.NET

5 i MicosoftFe

» i Microsoft Help Viewer

I 2 Elemente

_images/92-confirm-uninstall.png
] BPack - Uninstaller [E=SEE
@ his wil remove the installed applcation!

_images/52-log-dir.png
@va « AppData » Local » Temp » kicker-20120801-162333285-UTC-voorn-PC-KIEKER

Organisieren v 7 Offnen v Freigebenfar v Neuer Ordner

U Modile = Name : Anderungsdatom | Typ Grote
i Nos
=5 [kiekermep 010820121 MAP-Datc 1@
EMP (1] kieker-20120801-162333387-UTC--000-T... 01082012 18:23 DAT-Datei 3KB
0 vitsaisi
B Locatow
B Roaming

[

)| I eI Lrtmre i TR

DAT-Datei GroBe: 236 KB

_images/53-log4log.png
[=I@EI=]
O[> voom » Tos) [roomaure._p]

Organisieren v In Bibliothek aufnchmen v Freigebenfur v Neuer Ordner

U Mosile = Name Anderungsdatom | Typ Grote s

i Nos i roperfdstavoom 260920111645 Datordner

0 Temp IntalAnywhere (BO40T11733 Datcordner

Vit Kotake 010820121738 Datordner

3 ks 010820121738 Datordner

8 Suchvorgange 010820121738 Datordner
liekeiCOMIog 010820121823 L0G-Datei sike

Datei Bearbeiten Format Ansicht 7

9,246 INFO [main] kieker.kiekerdcom.Monitoringcontrolleracow - This is k »
3,009 INFO [J)-Integra Executor thread 0] kieker.monitoring.core.configuratio
2012-08-01 18:23:33,302 INFO [J-Integra Executor thread 0] kieker.monitoring. core.controller.m
- current state of kieker.monitoring (1.5)
Status: ‘enabled’
Name: 'KTEKER';
Hostname: 'voorn-pc’;
experimentIn: 1

JMxcontroller: X disabled

Registrycontroller: 0 strings registered.

TimeSource: 'kieker.monitoring. timer.SystemNanoTimer’ Time in nanoseconds (with nanos
writercontroller: Nunber of Inserts: 0

Automatic assignment of logging timestamps: ‘true’

writer: ‘kieker.monitoring.writer.filesystem. AsyncFsuriter”

configuration:
kieker . monitoring.writer.filesystem. AsyncFswriter.queuerullsehavior-
kieker monitoring.writer.filesysten. AsyncFswriter.flush="true’
kieker monitoring.writer.filesystem AsyncFswriter.Queuesize="10000"
kieker monitoring.writer.filesystem. AsyncFswriter. customstoragepath="
kieker monitoring.writer.filesysten. AsyncFswriter . Maxshutdownbelay="-1
kieker monitoring.writer.filesysten. AsyncFswriter.storeInjavaloTmpdir="true’
kieker monitoring. writer. filesysten. AsyncFswriter . maxentriesInFile='25000"

Records Tost: O writer Threads (i): u

o

_images/94-uninstall-complete.png
] BPack - Uninstaller (=)
@ his wil remove the installed applcation!

Force the deletion of C:\Program Files\Kieker 4COM
[]

nav.xhtml

 Table of Contents

 		
 Kieker Documentation

 		
 Introduction

 		
 Framework Components and Extension Points

 		
 Getting Started

 		
 Tutorials

 		
 How to Apply Insturmentation

 		
 How to contribute Documentation

 		
 Java Servlet Container Example

 		
 Prerequisites

 		
 Instrumenting Servlets

 		
 How to apply Kieker in Java EE Environments

 		
 Jetty

 		
 JBoss

 		
 Tomcat

 		
 Glassfish

 		
 WebSphere

 		
 JBoss (Wildfly)

 		
 How to pass the monitoring configuration to Kieker

 		
 How to collect Traces from Servlets

 		
 Prerequisites

 		
 Instrumenting Servlets

 		
 Running an Example Application

 		
 How to perform Trace Analysis

 		
 Prerequisites

 		
 Getting JPetStore

 		
 Instrumenting JPetStore

 		
 Analyzing Traces

 		
 Example Outputs of the Trace Analysis

 		
 How to configure Kieker within Java-Applications and -Services

 		
 Normal Java Application

 		
 Application with integrated Kieker at Compile or Bundling Time

 		
 Kieker-based Application

 		
 How to Write Tests for Your own Kieker Probes

 		
 How to use JMS Reader and Writer

 		
 ActiveMQ

 		
 How to use AMQP Writer and Reader

 		
 Preparation

 		
 Running the Example

 		
 Instrumenting Software

 		
 Instrumenting Java

 		
 Configuring Kieker

 		
 Manual Instrumentation

 		
 Instrumentation with AspectJ

 		
 Servlet Instrumentation

 		
 Instrumentation with CXF Interceptors

 		
 Instrumentation with DiSL

 		
 Instrumentation with AIM

 		
 Instrumentation of Java EE Applications

 		
 Instrumentation of Spring Applications

 		
 Instrumenting C and other Native Programming Languages

 		
 Creating your own Event Types

 		
 Instrumentation

 		
 Instrumenting Perl

 		
 Python Instrumentation

 		
 Kieker4COM

 		
 Downloading, Installing, Using Kieker4COM

 		
 Downloading Kieker4COM

 		
 Installing Kieker4COM

 		
 Testing the Kieker4COM installation

 		
 Uninstalling Kieker4COM

 		
 Kieker4COM Aspects

 		
 Instrumenting Visual Basic 6

 		
 AspectLegacy Quick Start (Visual Basic 6)

 		
 AspectLegacy (Visual Basic 6) User Guide

 		
 The Graphical User Interface (GUI)

 		
 AspectLegacy (Visual Basic 6) Developer Guide

 		
 Kieker4NET

 		
 Installation of Kieker4NET

 		
 Related Topics

 		
 Analyzing Monitoring Data

 		
 Kieker Tools

 		
 Developing with Kieker

 		
 Extending Kieker

 		
 Architecture

 		
 Java

 		
 Generic

 		
 Lectures

 		
 Related Work

 		
 Monitoring Tools (commercial / non-research)

 		
 Monitoring Tools (research)

 		
 Performance/Monitoring Tools Web Sites

 		
 Dynamic Reverse Engineering Tools

 		
 Log Analysis

 		
 Repositories of Performance Data

 		
 Profilers

 		
 UML Graph Libraries

 		
 Instrumentation Tools

 		
 ARM: Application Response Measurement

 		
 Trace/Control Flow Analysis/Visualization

 		
 Use Cases for Dynamic Analyis

 		
 Application/User-Space Monitoring in Linux

_images/aspect-compiler-exclude-files.png
L] ceanuponerror

(] comple after weaving Encoding type
1252
Excude fles rom process

Listof fies/drectories o be excluded from weaving/compiing, separated by semicolon:
"=50C "em”

[[] case-sensitve

sttt (nemn erg) (wGesinm] (wbite]
Losgngmessoes
eo

: Using logging configuration “dynamod.aspectiegacy.logging.properties” default location / ie)
|INFO: Using GUI configuration “dynamod.aspectegacy.gulpropertes” (defaultlocation / fie)
[INFO: Using weaver configuration “dynamod.aspectiegacy.eaver.propertes” (defaultlocation / fie)

_images/aspect-compiler-language.png
) Aspect-Compiler Configuration

Base nformations
Language Weaving Type
Viual Besic 6 ® Textbased ASTbased

Projects

Dynatod\dynamod.aspectiegacy \examples\vbs \bookstore-vb6-annotated \Bookstore.vbp |
oce Doy, spectegacy exanpes b beckaore v aseciaapects o
o Edpse\ierkspce.Dynaodéynamod spectegaey mp et

Vieaver options | eriicaion ptions | Logging optons|
Tl averwrite exicing fles. Line-break type

_images/aspect-compiler-configuration.png
Aspect-Compiler Configuration >

&

Base informations.
Language Weaving Type
® Text-based O AsT-based

Projects

Select main project | kieker.COM/examples/vb6/bookstore-annotated/Bookstore.vbp|

Select aspect project [k/src/kieker.COM/examplesivb6l../../src/aspectvb6/Aspects.vbp|

Select output path |[dynamodtrunk/src/kieker.COM/examples/vb6/bookstore-woven|

Weaver options | Verification options | Logging options |

overwrite output files Line-break type
add info-marks ® windows
[copy all directories © unix
[accept hidden files © Mac
[dleanup on error © current 05
[] compile after weaving Output encoding type
1508859_1 ~

Exclude files from process
st of files/directories to be excluded from weaving/compiling, separated by s...
sc | O case-sensitive

start || Cleanupfiles || clearlog || Exit

Logging messages
Weaving flle “/home/avanhoorn/svn_workidynamod/trunk/src/kieker, COM/examplesib6/boda)
Weaving file */home/avanhoorn/svn_work/dynamodjtrunk/src/kieker. COM/examplesivb6/bos
Transforming (iine 27): @interceptiCall:OpCalllcptr(*CRM", "getOffers*,"Catalog","getBook
Weaving file */home/avanhoorn/svn_work/dynamodjtrunk/src/kieker. COM/examplesib6/bos
Inserting global variables, found signature (line 4): *Sub Main()"

1 directories created, 4 files woven, 10 files copied, 1 new files created,

Output project: /home/avanhoorn/svn_workidynamodtrunk/src/kieker, COM/examplesibs/t
Finished,

il L [D

_images/aspect-compiler-encoding-type.png
‘Weaver optons | Verifcation options

overwrite existing fles.
addinfomarks

[[] copy al drectories
[accept hdden fes
[deanup on error

(] comple after weaving Encodng tpe
1252

Exclude fies from process.
List of fles/directories to be exciuded from weaving/compiling, separated by semicolon:.

_images/aspect-compiler-options.png
‘Weaver optons | verification options | Logging optons|

overnrite existng fes Line-bresk type
add info-marks. LoD

(] copy l drectories e

[acceptidden fles oz

7] deanup on error o

(] comple after weaving Encodng type

Cp1252
Excce s from process

List of fles/directories to be exciuded from weaving/compiling, separated by semicolon:.

_images/aspect-compiler-projects.png
) Aspect-Compiler Configuration
Base nformations

Language Weaving Type

Viual Besic 6 ® Textbased ASTbased

Projects

Dynatod\dynamod.aspectiegacy \examples\vbs \bookstore-vb6-annotated \Bookstore.vbp |
oce Doy, spectegacy exanpes b beckaore v aseciaapects o
o Edpse\ierkspce.Dynaodéynamod spectegaey mp et

Vieaver options [erificaion ptions | Logging opins|
Tl averwrite exicing fles. Line-break type

_images/aspect-compiler-line-break.png
‘Weaver optons | Verifcation options

overwrite existing fles.
addinfomarks

[[] copy al drectories
[accept hdden fes
[deanup on error

(] comple after weaving Encodng toe
1252

Exclude fies from process.
List of fles/directories to be exciuded from weaving/compiling, separated by semicolon:.

_images/aspect-compiler-logging.png
(st (wemn erg) (wesiii) (wbite)
Tosorgmesrooes

[I0: Using ogaing configuration “dynamod. aspectiegacy.logaing properties” (default location / ie)
|INFO: Using GUI configuration “dynamod.aspectegacy.gulpropertes” (defaultlocation / fie)
[INFO: Using weaver configuration “dynamod.aspectiegacy.eaver.propertes” (defaultlocation / fie)

_images/aspect-compiler-start.png
L] ceanuponerror
] compie after weaving

Encoding type
s
Exclude fies from process.

Listof fies/drectories o be excluded from weaving/compiing, separated by semicolon:
"=50C "em”

[[] case-sensitve

(st (ncemnere) (wGessivim) (wbite)
Losgngmessoes
eo

: Using logging configuration “dynamod.aspectiegacy.logging.properties” default location / ie)
|INFO: Using GUI configuration “dynamod.aspectegacy.gulpropertes” (defaultlocation / fie)
[INFO: Using weaver configuration “dynamod.aspectiegacy.eaver.propertes” (defaultlocation / fie)

_images/aspect-compiler-weaving-type.png
) Aspect-Compiler Configuration
Base nformations
Language
Viual Basic 6

Weaving Type
® Textbased ASTbased

Projects
Dynatod\dynamod.aspectiegacy \examples\vbs \bookstore-vb6-annotated \Bookstore.vbp |
oce Doy, spectegacy exanpes b beckaore v aseciaapects o
o Edpse\ierkspce.Dynaodéynamod spectegaey mp et

‘Weaver optons [Verification options | Logging optons|

5] overwrite exicing flec Line-break type

_images/com-assemblyComponentDependencyGraph.png
=)

<<assembly component>>
@1:Bookstore

T
o

" "2 <<assembly component>>
@3:CRM

<<assembly component>>

_images/com-assemblySequenceDiagram-2.png

_images/inst_createdir.png
Message

o The target directory will be created:

[Sekc the nstalltion path
C:\Program Files\AspectLegacy

s,

(Made with 12Pack- hitpiizpack.orah)

e

_images/inst_process.png
¥ IzZPack - Installation of AspectLegacy

8 Pack installation progress:
Ci{Program Files\AspectLegacy!liblstandalone-compilr jar

[

8 Overal installation progress:

(Made with 12Pack- hitpiizpack.orah)

>

_images/inst_finished.png
¥ IzZPack - Installation of AspectLegacy

48 Pack installation progress:

[)
8 Overal installation progress:

[)

(Made with 12Pack- hitpiizpack.orah)

oo

_images/inst_language.png
¥ Language Selection

Please selct your anguage below

Sens v

_images/jmxbean-monitoringcontroller-attributes.png
© Java Monitoring & Management Console

Connection Window Help

[pid: 27408 org.eclipse.jetty.xml.XmiConfiguration /tmp/start20789880.

| Overview | Memory | Threads | Classes | VM Summary | MBeans |

o CMimplementation
[com.sun.management
o javalang
o java.utitlogging
¢ Ckieker.monitoring
¢ @ MonitoringController
¢ Atributes
JMXDomain
ProbePatternList
StringRegistry
Name
Hostname
MonitoringEnabled
Debug
MonitoringTerminated
Experimentld
TimeSource
Numberofinserts
o Operations

Attribute values

Name

Value

Debug

false

Experimentid

i

Hostname

avh ThinkPad-RSS

MXDomain

Kieker. monitoring

MonitoringEnabled

ltrue

MonitoringTerminated _false

Name

KIEKER

Numberofinserts

0]

ProbePatternList

il

StringRegistry

Unavailable

MimeSource

Unavailable

Refresh

_images/jmxbean-monitoringcontroller-operations.png
5] Java Monitoring & Management Console Yo
Connection Window Help
[pid: 27408 org.edlipse.jetty.xml.XmIConfiguration /tmp/start29078988018865530132.prope! s ©
"Overview | Memory | Threads | Classes | VM summary | MBeans | *
(I Mmplementation Operation invocation
(3 com.sun.management g
o javalang boolean [icproneactivated | (p1[_string)
o java.utillogging
¢ 3 kieker.monitoring boolean [jivateprobe | (p1[__string) L]
¢ ® MonttoringController bool
o Attributes Al (e teProb 1 String
| S eactivateProbe | (pl| rine)
tostring i
sendMetadataAsRecord getUniqueldForstring | (p1 | String)
isProbeActivated

activateProbe
deactivateProbe
getUniqueldForstring
getstringForUniqueld
schedulePeriodicsampler
removeScheduledsampler
terminateMonitoring
enableMonitoring
disableMonitoring
incExperimentid
newMonitoringRecord

java.lang.string
Scheduledsamplerjob
boolean
boolean

boolean

getstringForUniqueld

schedulePeriodicsampler

removeScheduled

(p1] [)
(p1
sampler | (p1

terminateMo

[¢]

enableMonitoring

[¢]

I

_images/inst_register1_reg_confirm.png
Processing

Further setup

delete C:\DOCUME~1}e}LOCALS~1} Temp)aspectvhe.reg if exists

Register aspectvhs.reg

Registry Editor

) Are you sure you want to add the information in C:|DOCUNE1{elLOCALS 11 Templaspectvb6.reg to the regsiry?

(Made with 12Pack- hitpiizpack.orah)

_images/inst_target.png
¥ IzZPack - Installation of AspectLegacy

[Sekc the nstalltion path
C:\Program Files\AspectLegacy

(Made with 12Pack- hitpiizpack.orah)

_images/kieker-webgui-architecture.png
JSF

g 2
T 8
3 2
8 5
=
Beans Converter
)
K]] 1UserService IProjectService IGraphLayoutService
A £
H 5 UserServicelmpl ProjectServicelmpl GraphLayoutServicelmpl
&
s
g
3
3 1UserDAO IProjectDAO
8
g
2 DerbyUserDAOImpI FSProjectDAOImp!
5
[

199190 UOWIWOD puUE UPWOg

Data Sources

Apache Derby

File System

_images/jpetstore-example-FFscrsh.png
@ JPetstore Demo- Mozilla Firefox S

Edit View History Bookmarks Tools Help

F

i JPetStore Demo (B3
< | @ localhost v -

JPetStore

Demo w,SignIn; ?

Fish | Dogs | Reptiles | Cats | Birds

Fish

Saltwater, Freshwater
Dogs

Various Breeds

Cats

Various Breeds, Exotic

Varieties
Reptiles

Lizards, Turtles, Snakes
Birds
Exofic Varieties

_images/05-select-license.png
Lizenzschiassel [C:\Jsers\voom Desktoplintegra.xml | [Browsew:]

(Msde with 12Psck - itp:izpack org)

_images/06-confirm-registry.png
3 &Pack - Instalation of Kieker.COM.

Processing
Further setp
o
+\Usera\voozn\AppData\Local\Temp\kickez . zeg if exists
Register kisker.reg

delete

Durch das Hinzufigen von Informationen ksnnen Werte unbeabsichtigt geandert oder
‘geloscht werden, so dass Komponenten nicht meh richtig funktionieren. Wenn Sie der Quelle
von C:\Users\woorn\ AppData\Local\ Temp\kieker.reg nicht vertrauen, sollten Sie die.
Informationen nicht zur Registrierung hinzufigen.

Machten Sie den Vorgang fortsetzen?

(Msde with 12Psck - itp:izpack org)

_images/03-confirm-installdir.png
Message

=

The target directory will be created:
C:\Program Files\Kiekerd COM

_images/04-copy-done.png
IzPack - Installation of Kieker.COM =) =]

8 Pack installation progress:

[Fnished]
& Overal installation progress:

(Msde with 12Psck - itp:izpack org)

_images/07-registry-confirmed.png
FJ zPack - Installation of Kieker.COM

Processing
Further setp
— e

delete C:\Users\voorn\AppData\Local\Temp\kieker.reg if exists
Register kieker.reg

Die Schiassel und Werte von C:\Users\voorn\ AppData\Local\ Tempkieker.reg wurden
erfolgreich in die Registrierung eingetragen.

(Msde with 12Psck - itp:izpack org)

_images/structure_application.png
= (D Aspectlegacy
Db
= 2 examples
= 2 cobol
(22 example-annotated
122 example-aspects
122 example-woven
=2
122 bookstors-vb6-annotated
5 boskstore-vbs-aspects
15 boskstore-vbé-weaving-result
=1
(2 release
) Uninstaller

_images/01-lang.png
¥ Language Selection [sa)

_images/weaver-gui.png
) Aspect-Compiler Configuration
Base nformations
Language Weaving Type
Viual Basic 6

ASTbased

Projects

Dynatod\dynamod.aspectiegacy \examples\vbs \bookstore-vb6-annotated \Bookstore.vbp |
oce Doy, spectegacy exanpes b beckaore v aseciaapects o
o Edpse\ierkspce.Dynaodéynamod spectegaey mp et

Vieaver optons [Verficaton optons | Logging options
overwrite existing files Line-break type
ddinfomaris
] copy o drectories
[accept idden fles
£ deanup on eror

(] comple after weaving Encodng type
Cp1252 -

Exclude fes from process
Listof fles/directores to be excluded from weaving compiing, separated by semicolon:
"=.sec mm” [[] case-sensitve

sttt (nemn erg) (wGesinm] (wbite]
Losgngmessoes

[I0: Using ogaing configuration “dynamod. aspectiegacy.logaing properties” (default location / ie)
|INFO: Using GUI configuration “dynamod.aspectegacy.gulpropertes” (defaultlocation / fie)
[INFO: Using weaver configuration “dynamod.aspectiegacy.eaver.propertes” (defaultlocation / fie)

_images/02-installdir.png
|c:\program Fies\ieker4coM

(Msde with 12Psck - itp:izpack org)

_images/weaver-layers-gui.png
Graphical User Interface (GUI)

Visual Basic 6

dynamad.aspectiegacy.vb6.

Cobol

dynamod aspectlegacy.cobol

Core

dynamod.aspectiegacy.core

language-dependent layer

language-independent layer

_images/structure_archive.png
= 2 dynamod. aspectlegacy-1.0
Db
[SE=
= 2 examples
122 cobol
=2
122 bookstors-vb6-annotated
5 boskstore-vbs-aspects
15 boskstore-vbé-weaving-result

Db

_images/system-entities-html-FFscrsh.png
[2] ‘System Model Reconstructed by KiekerTraceAnalysis - Mozilla Firefox () (&) (%)
File Edit View History Bookmarks Tools Help

3 system Model Reconstructed by Kiek... | 4

Component Types.

Package Name Operations
bookstoreTracing Bookstore searcBook)
bookstoreTracing 0 o gelomersy
bookstoreTracing Catalog gelBookboolean)

Operations

Component type Name | Parameter types
boskstorelracing Booltore | searchBook
bosistorelracing CRM setotters
bookstorelracng Catalog | getBook

Assembly Components

Component type
boskstorelracing Booltare
bosistorelracing CRM
bosistoreTracing Catalog

Execution Containers

Deployment Components

Assembly component Execution container
‘@ bookstoreTracing Bookstore
‘@ bookstoreracing CRM

‘@ bookstoreracing Catalog
@ bookstoreracing Catalog

_images/weaver-layers.png
Visual Basic 6
dynamod aspectiegacy vb6

Cobol

dynamod.aspectiegacy.cobol

Core

dynamod.aspectiegacy.core

language dependent layer

language-independent layer

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

_static/plus.png

